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Multi-Variate Calculus

If a function f: R™ — R i1s differentiable, then the function Vf or gradient of f is defined by:
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The gradient of a function of two variables is defined by:
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Consider a vector function of the form:
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Then, the gradient is given by:
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Multi-Variate Calculus

The derivative matrix or Jacebian matrix of f (x) can be defined as:
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Given f:R"™ — R, 1f Vf is differentiable, then f is twice differentiable. The derivative of Vf 1s defined by:

- 92f 92f 1
B_x% dxpday
sz(x) = : " :
a*f a*f
Ldxq0xy Eﬁ i




Multi-Variate Calculus

The matrix D?f(x) is called the Hessian matrix of f at x. This is also denoted as F(x).

A matrix, M is symmetric if M = M7T. Consider the quadratic form f: R™ — R that is the function:
flx) = xTAx .
Let M € R™" and y € R™, then we can define derivative D with respect to x as:
D(y™™x) =y™ ,
DxTMx) =x"TM + Mx = x"™™M +xTMT = xT(M + MT) .
Since M is symmetric matrix, it follows that:
D(xT"TMx) = 2x"™M ,

D(xTx) = 2xT .



Gradient Descent Algorithm (GDA)

The gradient descent algorithm minimizes an objective function iteratively. Consider an objective function f(x).

k+1

Suppose we are given a point x* at iteration k. To move to the next point (minimum or optimum) x***, we begin

at x* and then add an amount —n, Vf (x*), where n,, is a positive scaler known as step size or learning rate, and

—Vf(x*) is the direction of maximum rate of decrease. Hence, an equation for GDA can be written:

x[k+1] — xk . nkvf(xk ) _
The learning rate 1 can be selected as a small or large value. A small value of i takes longer compute time to
reach the minimum point. On the other hand, a larger value of n results in faster (compute time) convergent to
the minimum point, as it requires only few gradient evaluations. There are variations of gradient based algorithms.
Among these, the steepest descent is the most commonly used. We can derive a closed form GDA solution for a

quadratic function. |

Consider a quadratic function of the form:

f(x) = %xTM.x — bTx.

Here, M € R™" is a symmetric positive definitive matrix, b € R"™, x € R". First, compute the gradient:

Vf(x) = Mx — b.



Gradient Descent Algorithm

Now, the Hessian of f(x) is F(x) = M = MT > 0. For notational simplicity, consider:
gk =Vf(x*) = Mx* —b.

Then we can write the steepest descent algorithm for the quadratic function as:
xRt = xk gk

Now for the steepest descent, the step size or learning rate can be computed as:

)y = arg min f(x* —n g*) = arg min{> (x* =g )M (™ — 1 g®) — (X% — e g*)"b}

By taking derivative (with respect to 1; ) of the above minimizer and setting to zero, we find:
(X = g*)"™M(—g*) + b g* =0,

or, equivalently,
m(g*)"Mg"* = ((x*)'M — b")g" .

()™ —b") = (g")7" .
Hence, the learning rate or step size 7, for the quadratic function can be written as:
_ _@HTg"
e = G TMgF:
Finally, we derive the closed form equation for the steepest descent algorithm for the quadratic function as:

_ _ (gthHT gikd
X0 = ) g0) = 09 LENO g

HOWEEVQI', we also can use:

in terms of the following:

gk =Vf(x*) = Mx* —b



Backpropagation

* An important component in artificial neural networks (ANNS) Is the training of the
weights based upon labeled training data via backpropagation processing. This
theory Is based upon optimization theory involving vectors

* The strategy begins with sets of given labeled training data. Assume that the vector
x describe the form of the input data sets. There is much freedom in the form of the
selected input data

 The output vector y describes the information desired by human users

 The backpropagation technique is an iterative approach based on gradient descent
methods. Fundamentally, an initial guess for the solution is selected, which is often
based on random weights. Then, gradient descent technigues are used to compute
the updated weights for each iteration



Backpropagation
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Backpropagation

Consider a general ANN shown in Figure 2-1. Here, there are some number P of initial images, each of which
comprises a particular input data vectorx. Each of the these data vectors are processed by some number L of layer
of the ANN. Let the index m be a particular node m layer £. Assume the output 0,_, ,,, from a particular node

with index m in the previous layer £ — 1 feeds forward into the subject node with index n in the current layer
be given by wy,, ,. In addition, a non-zero constant bias b, ,,, which does not depend upon the outputs of the

previous laver. can be applied to the subiect node with index n in laver £.

The linear activation ay,, 1s the sum of the product contributions from all M,_,; connected nodes at the previous
layer £ — 1 plus the bias b,,, and can be expressed via:
Mp—a
a{?,n - b{?,n -+ § wﬁ,m,noé’—l,?n -
- - - - - - - m=1 - - - -
Next, this linear activation a,,, 1s input into a general non-linear function f,(-) at layer £ in order to yield the

output from node n i1n layer £, 1.e.,

Opn — fe(ﬂf,n) .

It is convenient to incorporate the bias by, into the general weight formulation by defining a output variable

corresponding to a non-existent node n = 0 to be:
Op—10 — 1.
Next, the bias weight term is defined by:
Wf,o,u - bf?,u-

Therefore, the summation in (2.54) can be extended to apply with the lower index equal to unity rather than zero:

Mep—q

ai’,u — § Wé’,m,nof?—l,m .
m=0

The backpropagation weight update is computed often by using the mean squared error of the difference between
the measured output data vector vy and the vector predicted at the output of the forward model:

r P
1 " 2 1 " .
EGW) =52 19 —%ll” =55 D 5 — v} (9 — v} -
p=0 p=0



Backpropagation

Here, the summation is over the P individual pairs of input-output data vectors, 1.e., {Xy, V1 J, (X9, Vo, -+, 1Xp, Vo ).
Specifically, the vector §, denotes the final estimate of'y,, s is obtained from executing the ANN in the forward

direction from mput to output. Also, the vector w denotes the set of all of the weight coefficients w =
{Wl,l,b Wigge } that are to be optimized 1s this iterative backpropagation processing.

The overall iterative updates to each of the weights w = {WLLl, Wi 1, } proceeds by applying the partial
derivative of E(x, w) with respect to each weight individually. Here, we show a particular iteration using the

superscript {i}, so that the weight wﬁ;g at iteration i + 1 1s expressed in terms of that at the previous iteration
w; En .. and the partial derivative of the optimization function of E (x, w)with respect to the weight w t Ti . via:
(i+1} i} 3E(X W)
W&m,n o

{fmmn nﬁ an n
In this equation, n, 1s the learning rate or step size.



Statistical and Probability Theory

Statistics and probabulity theory are necessary for machine learning and artificial intelligence. Probabulity theory
models uncertain events and estimates parameters from measurements. As more data are available (1.e., additional
observations), the accuracy of classification improves significantly. Statistics and probability theory explain these
phenomena. In this section, we present some of the important concepts in statistics and probability theory applied

to machine learning.



Probability Density Functions
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Figure 2.2 Target pdfs with Gaussian normal distribution of 1= 0 and o= 2; N (0, 2.0)



A Priori Target Likelihood
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Figure: A Priori Target likelihood p =[0.5, 0.5]

A priori nformation has been collected over time. For the example, the processing begins with the
ATR assessing the measurement. Assuming the collection of equivalent data, the dlStlﬂCtlD]l between the vehicle
classification (1) and the incorrect classification (0) 15 p = [0.5 0.5]



Summary

* We briefly discussed important mathematical foundation necessary for
artificial intelligence and machine learning (Al/ML)
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