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Lecture Outline

1. Radio Frequency ATR: Past, Present, and Future:

20 min 

2.  Mathematics for Machine Learning / Deep Learning: 

      20 min 

3.  Review of ML Algorithms: 25 min 

4.  Deep Learning Algorithms: 30 min 

5.  RF Data for ML Research: 15 min 

6.  DL for Single Target Classification: 25 min 

7.  DL for Many Targets Classification: 25 min 

8.  RF Signals Classification: 20 min 

9.  RF ATR Performance Evaluation: 25 min 

10. Emerging ML Algorithms for RF  ATR: 35 min 
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Deep Learning 

• Deep Learning – took off in 2012 from the CVPR competition (Univ. Toronto) 

[PLATAFORMA] Inteligencia Artificial: ML, DL 
+Data Vol.I - ForoIngenieros50     60     70     80     90     00     10     20     30     40

Artificial Intelligence 

Machine Learning

Deep Learning

https://foroingenieros.com/f/foroingenieros/plataforma-inteligencia-artificial-ml-dl-data/c012
https://foroingenieros.com/f/foroingenieros/plataforma-inteligencia-artificial-ml-dl-data/c012
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Deep Learning 

• 1986 – Restricted Boltzman Machine (Smolensky)

• 1986  - Recurrent Neural Networks (Jordan)

• 1986 – Multilayer Perceptron, Autoencoder (Rumelhart, Hinton, Williams)

• 1987 – Bidirectional RNN (Schuster and Paliwal)

• 1988 – Convolutional Neural Network, LeNet (Lecun)

• 1997 – Long Short-Term Memory (Hochreiter and Schmidhuber)

• 2006 – Deep Belief (Neural) Networks (Hinton)

• 2012 – DNN wins Image Competition 

• 2012 – Deep Boltzmann Machines (Salakhutdinov and Hinton)

• 2014 – Generative Adversarial Networks (Goodfellow)

• 2017 – Capsule Networks (Sabour, Frost, Hinton)

• Transfer learning, Zero-Shot Learning

What are convolutional 
neural networks (CNN)? – 
TechTalks 
(bdtechtalks.com)

Hidden Layer

Class

Parts

Corner

Edge

Data

https://bdtechtalks.com/2020/01/06/convolutional-neural-networks-cnn-convnets/
https://bdtechtalks.com/2020/01/06/convolutional-neural-networks-cnn-convnets/
https://bdtechtalks.com/2020/01/06/convolutional-neural-networks-cnn-convnets/
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Takeaway Message

Method Performance (%) Reference 
SOC EOC-1 EOC-2 

Pulse Couple Neural Network (PCNN) [35 tgts] 87.0 75 67 Blasch, 1998 
A-ConvNets 99.1 96.1 98.9 Chen, et al., 2016 
AFRLeNet 99.4 Profeta et al., 2016 

CNN-SVM 99.5 95.75 Amrani, et al., 2017 

VGG-S1 98.8 94.15 Amrani, et al., 2017 

VGG-S, Feature Fusion, KNN 99.82 96.16 Amrani, et al., 2017 
Multi-aspect aware bidirectional LSTM RNN 99.90 - 99.59 Zhang, et al. 2017 
Joint Supervised Dictionary 97.65 98.39

GAN-CNN 97.53 Zheng, C et al, 2019 

MGAN-CNN 97.81 Zheng, C et al, 2019 

Triple GAN and Integrated GAN 99.9 Gao, F.  Et al 2019 
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Types of Deep Learning 

Deep Learning Algorithms 

Generative Models Hybrid Models Discriminative Models 

• Deep Belief Networks (DBN)

• Deep Boltzmann Machine

• Autoencoder

• Multi-Layer Perceptron

• Pulse-coupled NN (PCNN)

• Deep Neural Network (DNN)

• Deep stacking Nets (DSN)

• Convolutional NN (CNN)

• Recurrent NN (RNN)

Generative – form features from low-dimensional space

Discriminative – determine important features among choices

Contemporary – Active learning, Transfer Learning

                             Generative Adversarial Networks (GANs)

Figure 4.3
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Autoencoder (Unsupervised Learning)
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Autoencoder (Unsupervised Learning)

• An autoencoder is an unsupervised learning 
model that does not require labels to predict y = 
f(x), but rather minimizes the difference between 
the input x and the output x.

• Encoder: mapping states to features (: X →F). 

• Decoder:  mapping features to outputs (: F →X). 

• Encoder-decoder: Minimize the error:

• Using a single hidden layer h (called the code or latent variables 
representation), the encoder maps the input x to the hidden layer  (W is 
the weight and is the bias vector)

• where  is an element-wise activation function (e.g., rectified linear 
unit (ReLU), hyperbolic, or sigmoid function)

L(x, x) = ||x − g (f(x))||2~

• The decoder stage of the maps h to the reconstructed model x ′:

• The decoder minimizes the reconstruction errors from the loss function 
by averaging x over some input training set

• A sparsity constraint (or penalty (h)) 
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Sparse Autoencoder
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Autoencoder Method

• Some sparsity of activation penalty terms 
include:

• Kullback-Leibler (KL) divergence (average 
activation )

• 1 or 2 regularization (scaling parameter )

• K-sparse autoencoder (rectified linear units 
(ReLU) )

(h) = i=1 |hi| 

• Autoencoders:
• Denoising AE (distortion

• Contractive AE (Frobenius Norm)

• Variational AE (Bayes update)
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Feed Forward NN
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• The methods are based on FNN

• Multi-Layer Perceptron

• Boltzmann NN

• Pulse Couple NN

• New methods

• Convolutional NN

• Recurrent NN
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Pulse Coupled NN
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PCNN on MSTAR Data
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Blasch, E. P., “Biological Information Fusion Using PCNN and Belief Filters,” IEEE Intl Joint 
Conference on Neural Networks, vol.4, 2792 -2795, 1999.
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PCNN Results

20 40 60 80 100 120

20

40

60

80

100

120

20 40 60 80 100 120

20

40

60

80

100

120

(a) Target Image                               (b) PCNN Image

Figure 4.10

Blasch, E. P., “Biological Information Fusion Using PCNN and Belief Filters,” IEEE Intl Joint 
Conference on Neural Networks, vol.4, 2792 -2795, 1999.



© Majumder, Blasch, Garren

PCNN Results
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Blasch, E. P., “Biological Information Fusion Using PCNN and Belief Filters,” IEEE Intl Joint 
Conference on Neural Networks, vol.4, 2792 -2795, 1999.

*360 Movie



© Majumder, Blasch, Garren

PCNN Results
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Blasch, E. P., “Biological Information Fusion Using PCNN and Belief Filters,” IEEE Intl Joint 
Conference on Neural Networks, vol.4, 2792 -2795, 1999.
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B. Kahler and E. Blasch, “Decision-Level Fusion Performance Improvement from Enhanced HRR Radar 
Clutter Suppression,” J. of. Advances in Information Fusion, Vol. 6, No. 2, pp. 101-118, Dec. 2011. 

* See Chapter 9 for more details
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Convolutional Neural Network

Pooling
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Method Convolutional Layers Reference 
AlexNet 5 Krizhevsky, et al. 2012 
VGG (Visual Geometry Group) 19 Simonyan, et al., 2014
GoogleNet 22 Szegedy, et al., 2015
ResNet(Residual Network) 34 He, et al., 2015

Figure 4.14• Relevance (Spatial)
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CNN Processing
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Three hyperparameters control the size of the output channel: the depth K (connections), stride S (spatial), 
and zero-padding  P (output size).   Number of neurons : N = [(T – K + 2P)/S + 1]
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Convolutional Neural Network 

(1) Convolutional layer
A convolution layer convolves the result: C = I*F where it is pointwise multiplication (row*column) 

1 -1 -1

-1 1 -1

-1 -1 1

Filter 1Image

Convolution

1

= [0(1)+0(-1)+0(-1)] + [0(-1)+0(1)+0(-1)] + [0(-1)+0(-1)+(1)(1)] = 1
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Convolutional Neural Network (2)
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Convolutional Neural Network 
(2) Pooling layer

• The pooling layer spatially resizes the input and operates independently on every input depth. 
The most common filters size is 2×2 where a stride of S = 2 downsamples at every input depth 
slice in the input by 2 along both width and height, discarding 75% of the activations. 

• Using the Rectified Linear Unit (ReLU), then the non-saturating activation function 
• f(x) = max(0, x) removes negative values from an activation map by setting them to zero. 
• The max function increases the nonlinear properties of the overall network decision without 

affecting the receptive fields of the convolution layer. 
• Each filter the pooling layer goes from 44 to 2×2. 
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Convolutional Neural Network (3)
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Convolutional Neural Network 
(3) Fully Connected Layer

• where yi is the output from the last hidden layer for corresponding target c, zc(·) is the final activation 
function, and k is the one of target classes among the set [1, …, K].

• Neurons in a fully connected layer 
have connections to all activations in 
the previous layer, as seen in the 
regular ANN. 

• The activations are given by a 
matrix multiplication followed by a 
vector addition of a bias offset. The 
final layer is the ‘"loss layer,” which 
penalizes the deviation between the 
predicted (output) and the true 
labels. Many CNNs use the Softmax 
loss to predict a single class from K 
mutually exclusive classes:
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Convolutional Neural Network

• Drop Out: 
• To prevent overfitting, at each training stage, individual nodes are either "dropped out" of the net 

with probability (1 − p) or kept with probability p , reducing the network size. 
• In the training stages, the probability that a hidden node will be dropped is usually 0.5. 
• The removed nodes are then reinserted into the network with their original weights for testing. 
• DropOut Layer improves training speed by reducing node interactions, allowing them to learn more 

robust features that better generalize to new data. 

Method Performance (%) Reference
SOC EOC-1 EOC-2

Pulse Couple Neural Network (PCNN) 87.0 75 67 Blasch, 1998
Conditional False Alarm Rate (CFAR) 89.0 91 85 Mossing, et al., 1998 
Support Vector Machine (SVM) 90.0 81 75 Zhao, et al., 2001 
Conditional Gaussian 92.0 80 79 O'Sullivan, et al., 2001
AdaBoost 92.0 82 78 Sun, et al., 2007
Bayesian compressive sensing (BCS) 92.0 - - Zhang, et al., 2013
Sparse Representation of Monogenic Signal (MSRC) 93.6 88.4 - Dong, et al. 2014
Iterative graph thickening (IGT) 95.0 85 80 Srinivas, et al., 2014
Modified Polar Mapping Classifier (M-PMC) 98.8 - 97.3 Park, et al., 2014
Monogenic scale space (MSS) 96.6 98.2 - Dong, et al., 2015
A-ConvNets 99.1 96.1 98.9 Chen, et al., 2016
AFRLeNet 99.4 Profeta et al., 2016

Profeta et al. achieved a Portability of Correct Classification (PCC) of 99.4% for the SOC for a 7- target MSTAR set.
                                         using a dropout layer to AlexNet, which they called AFRLeNet
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• Persistence (Temporal)
- RNNs maintains information persistence via loops, as with Gaussian 

Mixture Models (GMM). 
• A given neural network A receives an input xt and outputs a value yt, according 

to a hidden (latent relationship) ht. 
• By passing data through iterative steps in the network, the loop is realized, 

and hence is recurrent. 

• Approaches
• Boltzmann Machine – NN that receives stochastic inputs
• Long Short-term Memory (LSTM) – locally-stored short-term results
• Gated Recurrent Unit (GRU) – efficient LSTM/RNN
• Reservoir Computing - (e.g., Liquid State Machine) – for low power 

applications
• Spiking Neural Network - randomly connected neurons
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Recurrent Neural Network
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LSTM, there are three functions: (1) vector processing, (2) NN layer operations, and (3) pointwise operations
       Vector operations include concatenation (merging) and copying (forking) of entire vector from one node to the next.    
       NN layers conduct the learning operations such as sigmoid () and tanh weighting. 
       Pointwise operations include vector addition(+) and multiplication ().
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RF Signal Data Collection

Signal Processing and Data Collection 
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Figure 4.18
• Example
• Radio Frequency Adversarial Learning (RFAL) framework exploits transmitter specific “signatures” like 

the in-phase (I) and quadrature (Q) imbalance (i.e., the I/Q imbalance) present in all transmitters 

• Learns feature representations using a deep neural network (DNN) that uses the I/Q data from received 
signals. 

• After elimination of the adversarial transmitters, the trusted transmitters are classified using a 
convolutional neural network (CNN), a fully connected DNN, and a recurrent neural network (RNN). 

# Transmitters Type Rows Columns SNR Size
Test 1 4 USRP B210 transmitters 160K 2048 30 dB 6.8 GB
Test 1 8 USRP B210 transmitters 320K 2048 30 dB 13.45 GB
Test 2 1 USRP B210 transmitter 80K 2048 30 dB 3.31 GB
Test 2 1 PLUTO transmitter 80K 2048 30 dB 2.85 GB
Test 3 8 USRP B210 transmitters 320K 2048 20, 10, 0 dB 13 GB
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RF Deep Learning Architectures
Deep Neural Network
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RF Deep Learning Architectures

Deep Neural Network

Convolutional Neural Network

Recurrent Neural Network

Figure 4.19

Accuracy Comparison of NN Approaches to 
classify 4 and 8 transmitters

#Trans Model #Parameters Acc (%) Time (min)
4 CNN 38 Million 89.07 ~ 25
4 DNN 6.8 Million 96.49 ~ 12
4 RNN-LSTM 14.2 Million 97.40 ~ 12
4 RNN-GRU 10.7 Million 97.85 ~ 12
8 CNN 38 Million 81.59 ~ 30
8 DNN 6.8 Million 94.60 ~ 15
8 RNN-LSTM 14.2 Million 95.78 ~ 16
8 RNN-GRU 10.7 Million 97.06 ~ 16
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Long Short-Term Memory 
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Figure 4.20
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Xt
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Step 1: Forget Gate Layer
                   (Data to remove)  

Xt



tanh

Decide 
what to 
insert

ct-1

ht-1

it ct
~

Step 2: Update Gate
                     (Data to store)

Long Short-Term Memory 

ft =  (Wf•[ht−1, xt] + bf) it =  (Wi• [ht−1, xt] + bi)

= tanh (WC• [ht−1, xt] + bC) 

Features Candidate 
(features)
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Xt
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Long Short-Term Memory 

Step 2: Update Gate
                     (Data to store)

it =  (Wi• [ht−1, xt] + bi)

= tanh (WC• [ht−1, xt] + bC) 

Candidate 
(features)

The old state ft is multiplied, thereby forgetting 
information that is deemed to be unimportant.

Ct = ft*Ct−1 + it*

ft =  (Wf•[ht−1, xt] + bf) Step 1:



© Majumder, Blasch, Garren

Step 3: Output Gate  (Data to Pass)  
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Long Short-Term Memory 

The filtered output includes a sigmoid layer that decides “what” and a tanh layer 
(e.g., {-1 +1}) to determine “how much”. 

ot =  (Wo• [ht−1, xt] + bo) 

ht = ot*tanh(Ct)
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Gated Recurrent Unit  (GRU)

Xt
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+



tanh


tanh 

Combine with 
transformed xt

ct-1 ct

ht-1

ft it ct
~

Ot

Decide 
what to 

reset

- 1



One Sequence:  LSTM cell drawback is the need  for additional memory

GRU have one less gate than LSTMs 
•   Combines the “forget” and “input” gates into a single 

“update gate.” 
•  Simply exposes the full hidden content without any control.

“reset gate” (it), 

“update gate” (ft), 

“cell state” memory (ct)

“recurrent” (ct)

it =  (Wxi xt+ Whi ht−1 + bi) 

ft= (Wx f xt + Whf ht−1 + bf)

Ct  = tanh (Wx c xt + Whc(ftht−1))

ht  = (1 - it)Ct+ (it) ht−1
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LSTM SAR Example
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Figure 4.21

Multi-aspect aware Bidirectional Long Short-Term Memory (LSTM) recurrent neural networks (MA-BLSTM).
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Boltzmann Machine
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Figure 4.22

The difference in the global energy results from a single unit i equaling 0 (off) versus 1 (on) 

• wij is the connection strength between unit j and unit i.

• si is the state, si {0,1} of unit i, and

• i is the bias of unit i in the global energy function, and−  is the 

activation threshold for the unit.
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Deep Boltzmann Machine 
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Figure 4.23

ADVANTAGE
Learn complex 
relations from 
limited label data 
by doing 
processing in both 
directions

DISADVANTAGE
Slow as from the 
multiple MCMC 
steps
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Learning Approaches
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Figure 4.24

RL: Value function V (s) describes the 
expected return starting with state s0 = 
s, and successively follows policy . 
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Transfer Learning
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Figure 4.25

Transfer learning:      Active Learning (Human to Machine)

                                     Domain adaptation (Machine to Machine)
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Transfer Learning 
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Generative Adversarial Network
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Figure 4.30

• In GANs, (uses an implicit transition operator to determine the decision density) 
• MLP generator creates new data instances, 
• MLP discriminator evaluates them for authenticity.  That is. the discriminator decides if each instance of data 

under review belongs to the actual training dataset:
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Generative Densities
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Variational 
Autoencoder
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Generative Adversarial Network (GAN)

• In GANs, (uses an implicit transition operator to determine the decision density) 
• MLP generator creates new data instances, 
• MLP discriminator evaluates them for authenticity.  That is. the discriminator decides if each instance of data 

under review belongs to the actual training dataset:

• Discriminative models learn the boundary between classes, and

• Generative models model the distribution of individual classes

Figure 4.27

Deep generative models, such as graphical models, 
• Deep Belief Networks: utilize Bayesian reasoning in a Markov Chain to determine p(c|y) = [p(y | c) p(c)] / 

p(y); where p(y | c) is the likelihood and p(c) is the prior instances of a class. 
• Deep Belief Network (DBN) : As Deep Boltzmann machine (with stochastic variables of the uncertainty 

and bias on c and y) is impossible to compute, so a DBN is used for each layer

           p(y, h1, h2, …, hn, c) = p(y|h1)p(h1|h2) … p(hn-2|hn-1)p(hn-1|hn) p(hn|c) p(c)

• The DBN gives tractable results; however, other methods discussed provide approximate densities p(y| c) 
using the maximum likelihood.
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Deep Belief Network
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DBN is used for each layer:  p(y, h1, h2, …, hn, c) = p(y|h1)p(h1|h2) … p(hn-2|hn-1)p(hn-1|hn) p(hn|c) p(c)
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Generative Adversarial Network (GAN)

GAN Types:
• Given some of the features, they predict the associated features (GMM, Latent Dirichlet Allocation)
• Given a label, they predict the associated features (Naive Bayes, autoregressive), or
• Given a hidden representation, they predict the associated features (VAE, GAN)

 

GAN zoo (https://github.com/hindupuravinash/the-gan-zoo) provides a listing of available GANs

Generator

Discriminator

Min-Max Game 

 

https://github.com/hindupuravinash/the-gan-zoo
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Generative Adversarial Network (GAN)

Comparisons (adapted from Goodfellow, et al., [46])

 

GAN zoo (https://github.com/hindupuravinash/the-gan-zoo) provides a listing of available GANs

Deep directed 
graphical models

Deep undirected 
graphical models

Generative 
Autoencoders

Adversarial Models

Model Design Most models 
difficult

Careful design to 
ensure properties

Any differential function 
is theoretically permitted 

Any differential function 
is theoretically permitted

Training Inference needed 
during training

Inference needed. 
MCMC approximates 
partition function 
gradient

Enforced tradeoff 
between mixing and 
power of reconstruction 
generations

Synchronizing the 
discriminator with the 
generator

Inference Approximate 
inference

Variational inference MCMC-based inference Approximate inference

Sampling Available Requires Markov 
Chain 

Requires Markov Chain Available

Evaluation p(z) Intractable, but can 
be approximated  

Intractable, but can 
be approximated  

Not explicitly 
represented, may be 
approximated with 
Parzen density 
estimation

Not explicitly 
represented, may be 
approximated with 
Parzen density 
estimation

https://github.com/hindupuravinash/the-gan-zoo
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Generative Adversarial Network (GAN)

Steps:

Step 1: The generator takes in random numbers 
and returns an image.

Step 2: The generated image (data) is fed into the 
discriminator alongside a stream of images 
taken from the actual, ground-truth dataset.

Step 3: The discriminator injects both real and 
fake images and returns probabilities, each 
being a number between 0 and 1, with 

 1 representing a prediction of authenticity, 
     0 representing the imposter.

 GAN zoo (https://github.com/hindupuravinash/the-gan-zoo) provides a listing of available GANs

https://github.com/hindupuravinash/the-gan-zoo
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EO with SAR Image

• From Arnold, J., L. Moore, and E. Zelnio. “Blending Synthetic and 
Measured Data Using Transfer Learning for Synthetic Aperture Radar (SAR) 
Target Classification,” Proc. SPIE, Vol.10647, 2018.

Figure 4.27
• GAN Example 
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Takeaway Message

Method Performance (%) Reference 
SOC EOC-1 EOC-2 

Pulse Couple Neural Network (PCNN) [35 tgts] 87.0 75 67 Blasch, 1998 
A-ConvNets 99.1 96.1 98.9 Chen, et al., 2016 
AFRLeNet 99.4 Profeta et al., 2016 

CNN-SVM 99.5 95.75 Amrani, et al., 2017 

VGG-S1 98.8 94.15 Amrani, et al., 2017 

VGG-S, Feature Fusion, KNN 99.82 96.16 Amrani, et al., 2017 
Multi-aspect aware bidirectional LSTM RNN 99.90 - 99.59 Zhang, et al. 2017 
Joint Supervised Dictionary 97.65 98.39

GAN-CNN 97.53 Zheng, C et al, 2019 

MGAN-CNN 97.81 Zheng, C et al, 2019 

Triple GAN and Integrated GAN 99.9 Gao, F.  Et al 2019 
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