
Uttam K. Majumder

Chapter 4: Deep Learning

U. Majumder, E. Blasch, D. Garren, Deep Learning for Radar and Communications Automatic Target
Recognition, Artech House, 2020.

Machine Learning Techniques for Radar

Automatic Target Recognition (ATR)

© Majumder, Blasch, Garren

Lecture Outline

1. Radio Frequency ATR: Past, Present, and Future:

20 min

2. Mathematics for Machine Learning / Deep Learning:

 20 min

3. Review of ML Algorithms: 25 min

4. Deep Learning Algorithms: 30 min

5. RF Data for ML Research: 15 min

6. DL for Single Target Classification: 25 min

7. DL for Many Targets Classification: 25 min

8. RF Signals Classification: 20 min

9. RF ATR Performance Evaluation: 25 min

10. Emerging ML Algorithms for RF ATR: 35 min

© Majumder, Blasch, Garren

Deep Learning (DL) Based
Radio Frequency (RF)

Automatic Target Recognition (ATR)

(1) Introduction

(Radar Signals)

(2) Mathematical

Preliminary

(3) Machine

Learning

(4) Deep Learning

(5) RF as Big Data

(6) Single Object

Classification

(7) Multi Object

Classification

(8) Signals

Communication

(9) Classification

Evaluation

(10) Emerging Methods

© Majumder, Blasch, Garren

Chapter 4 Outline
4.1 Introduction 97
 4.1.1 Deep Neural Networks 98
 4.1.2 Autoencoder 100
4.2 Neural Networks 105
 4.2.1 Feed Forward Neural Networks 105
 4.2.2 Sequential Neural Networks 114
 4.2.3 Stochastic Neural Networks 119
4.3 Reward-Based Learning 123
 4.3.1 Reinforcement Learning 123
 4.3.2 Active Learning 126
 4.3.3 Transfer Learning 126
4.4 Generative Adversarial Networks 130
4.5 Summary 136

© Majumder, Blasch, Garren

Deep Learning

• Deep Learning – took off in 2012 from the CVPR competition (Univ. Toronto)

[PLATAFORMA] Inteligencia Artificial: ML, DL
+Data Vol.I - ForoIngenieros50 60 70 80 90 00 10 20 30 40

Artificial Intelligence

Machine Learning

Deep Learning

https://foroingenieros.com/f/foroingenieros/plataforma-inteligencia-artificial-ml-dl-data/c012
https://foroingenieros.com/f/foroingenieros/plataforma-inteligencia-artificial-ml-dl-data/c012

© Majumder, Blasch, Garren

Deep Learning

• 1986 – Restricted Boltzman Machine (Smolensky)

• 1986 - Recurrent Neural Networks (Jordan)

• 1986 – Multilayer Perceptron, Autoencoder (Rumelhart, Hinton, Williams)

• 1987 – Bidirectional RNN (Schuster and Paliwal)

• 1988 – Convolutional Neural Network, LeNet (Lecun)

• 1997 – Long Short-Term Memory (Hochreiter and Schmidhuber)

• 2006 – Deep Belief (Neural) Networks (Hinton)

• 2012 – DNN wins Image Competition

• 2012 – Deep Boltzmann Machines (Salakhutdinov and Hinton)

• 2014 – Generative Adversarial Networks (Goodfellow)

• 2017 – Capsule Networks (Sabour, Frost, Hinton)

• Transfer learning, Zero-Shot Learning

What are convolutional
neural networks (CNN)? –
TechTalks
(bdtechtalks.com)

Hidden Layer

Class

Parts

Corner

Edge

Data

https://bdtechtalks.com/2020/01/06/convolutional-neural-networks-cnn-convnets/
https://bdtechtalks.com/2020/01/06/convolutional-neural-networks-cnn-convnets/
https://bdtechtalks.com/2020/01/06/convolutional-neural-networks-cnn-convnets/

© Majumder, Blasch, Garren

Takeaway Message

Method Performance (%) Reference
SOC EOC-1 EOC-2

Pulse Couple Neural Network (PCNN) [35 tgts] 87.0 75 67 Blasch, 1998
A-ConvNets 99.1 96.1 98.9 Chen, et al., 2016
AFRLeNet 99.4 Profeta et al., 2016

CNN-SVM 99.5 95.75 Amrani, et al., 2017

VGG-S1 98.8 94.15 Amrani, et al., 2017

VGG-S, Feature Fusion, KNN 99.82 96.16 Amrani, et al., 2017
Multi-aspect aware bidirectional LSTM RNN 99.90 - 99.59 Zhang, et al. 2017
Joint Supervised Dictionary 97.65 98.39

GAN-CNN 97.53 Zheng, C et al, 2019

MGAN-CNN 97.81 Zheng, C et al, 2019

Triple GAN and Integrated GAN 99.9 Gao, F. Et al 2019

© Majumder, Blasch, Garren

DNN Model (Connected)

Input Hidden 1 Hidden2 Hidden3 Output

fn-1

f1

f2

f3

fn

c2

c1

c3

Car

Truck

Tank

Figure 4.1

© Majumder, Blasch, Garren

DNN Model (Hidden Layers)

Input Hidden 1 Hidden2 Hidden N Output

fn-1

f1

f2

f3

fn

c2

c1

c3

Car

Truck

Tank

Figure 4.2

© Majumder, Blasch, Garren

Types of Deep Learning

Deep Learning Algorithms

Generative Models Hybrid Models Discriminative Models

• Deep Belief Networks (DBN)

• Deep Boltzmann Machine

• Autoencoder

• Multi-Layer Perceptron

• Pulse-coupled NN (PCNN)

• Deep Neural Network (DNN)

• Deep stacking Nets (DSN)

• Convolutional NN (CNN)

• Recurrent NN (RNN)

Generative – form features from low-dimensional space

Discriminative – determine important features among choices

Contemporary – Active learning, Transfer Learning

 Generative Adversarial Networks (GANs)

Figure 4.3

© Majumder, Blasch, Garren

Autoencoder (Unsupervised Learning)

Input

f1

f2

f3

fn

c2

c1

c3

Car

Truck

Tank

x
E

n
c
o

d
e
r

f (x)

h

Latent
vector

x

Output

Remodel

D
e
c
o

d
e
r

f1

f2

f3

fn

g (h)

L(x, x) = ||x − g (f(x))||2~

code

Figure 4.4

© Majumder, Blasch, Garren

Autoencoder (Unsupervised Learning)

• An autoencoder is an unsupervised learning
model that does not require labels to predict y =
f(x), but rather minimizes the difference between
the input x and the output x.

• Encoder: mapping states to features (: X →F).

• Decoder: mapping features to outputs (: F →X).

• Encoder-decoder: Minimize the error:

• Using a single hidden layer h (called the code or latent variables
representation), the encoder maps the input x to the hidden layer (W is
the weight and is the bias vector)

• where  is an element-wise activation function (e.g., rectified linear
unit (ReLU), hyperbolic, or sigmoid function)

L(x, x) = ||x − g (f(x))||2~

• The decoder stage of the maps h to the reconstructed model x ′:

• The decoder minimizes the reconstruction errors from the loss function
by averaging x over some input training set

• A sparsity constraint (or penalty (h))

© Majumder, Blasch, Garren

Sparse Autoencoder

Input

h2

hn

Encoder Decoder

f1

f2

f3

fn

c2

c1

c3

Car

Truck

Tank

x
E

n
c
o

d
e
r

f (x)

(h)

Latent
vector

x

Output

Remodel

D
e
c
o

d
e
r

f2

fn

g (h)

L(x, x) = ||x − g ((f(x)))||2~

code

f1

f3

Figure 4.5

© Majumder, Blasch, Garren

Autoencoder Method

• Some sparsity of activation penalty terms
include:

• Kullback-Leibler (KL) divergence (average
activation)

• 1 or 2 regularization (scaling parameter )

• K-sparse autoencoder (rectified linear units
(ReLU))

(h) = i=1 |hi|

• Autoencoders:
• Denoising AE (distortion

• Contractive AE (Frobenius Norm)

• Variational AE (Bayes update)

© Majumder, Blasch, Garren

Chapter 4 Outline
4.1 Introduction 97
 4.1.1 Deep Neural Networks 98
 4.1.2 Autoencoder 100
4.2 Neural Networks 105
 4.2.1 Feed Forward Neural Networks 105
 4.2.2 Sequential Neural Networks 114
 4.2.3 Stochastic Neural Networks 119
4.3 Reward-Based Learning 123
 4.3.1 Reinforcement Learning 123
 4.3.2 Active Learning 126
 4.3.3 Transfer Learning 126
4.4 Generative Adversarial Networks 130
4.5 Summary 136

© Majumder, Blasch, Garren

Feed Forward NN

Input Hidden Output

fn-1

f1

f2

f3

fn

Figure 4.6
• The methods are based on FNN

• Multi-Layer Perceptron

• Boltzmann NN

• Pulse Couple NN

• New methods

• Convolutional NN

• Recurrent NN

© Majumder, Blasch, Garren

Multi-Layer Perceptron

Weights

x1

x2

x3

yn-1

yn

fn-1

f1

f2

f3

fn

Inputs

1

w1,1

w1,2

w1,3

wn-1, 1

wn, 1

Constant



Net

Input

Function

Weighted

Sum

Output

Activation

Function

Step

Function

y

w2,1

w2,2

w2,3

1

Figure 4.7

© Majumder, Blasch, Garren

Pulse Coupled NN

X
wik

wik

wik



+ 1

Lik

1

Xi

Xn

Linking

Inputs

X
mik

mik

mik

Dik

1

Xi

X
m

Driving

Inputs

1+Lk

Dk

+
-

Step Function

Yk

k

Vs

1

Uk



Blasch, E. P., “Biological Information Fusion Using PCNN and Belief Filters,” IEEE Intl Joint
Conference on Neural Networks, vol.4, 2792 -2795, 1999.

Driving Function

Linking Function

Threshold Function

where

Figure 4.8

© Majumder, Blasch, Garren

PCNN on MSTAR Data

original

20 40 60 80 100 120

20

40

60

80

100

120

PCNNImage - tank 2

20 40 60 80 100 120

20

40

60

80

100

120

Figure 4.9

Shadows Features

Clutter

Blasch, E. P., “Biological Information Fusion Using PCNN and Belief Filters,” IEEE Intl Joint
Conference on Neural Networks, vol.4, 2792 -2795, 1999.

© Majumder, Blasch, Garren

PCNN Results

20 40 60 80 100 120

20

40

60

80

100

120

20 40 60 80 100 120

20

40

60

80

100

120

(a) Target Image (b) PCNN Image

Figure 4.10

Blasch, E. P., “Biological Information Fusion Using PCNN and Belief Filters,” IEEE Intl Joint
Conference on Neural Networks, vol.4, 2792 -2795, 1999.

© Majumder, Blasch, Garren

PCNN Results

PCNN - original

20 40 60 80 100 120

20

40

60

80

100

120

test

20 40 60 80 100 120

20

40

60

80

100

120

Figure 4.11

Blasch, E. P., “Biological Information Fusion Using PCNN and Belief Filters,” IEEE Intl Joint
Conference on Neural Networks, vol.4, 2792 -2795, 1999.

*360 Movie

© Majumder, Blasch, Garren

PCNN Results

original PCNNImage - tank 2
Figure 4.12

Blasch, E. P., “Biological Information Fusion Using PCNN and Belief Filters,” IEEE Intl Joint
Conference on Neural Networks, vol.4, 2792 -2795, 1999.

*360 Movie

© Majumder, Blasch, Garren

Confusion Matrix Fusion

0.66 0.04 0.03 0.03 0.02 0.03 0.03 0.03 0.03 0.03 0.04 0.03

0.04 0.65 0.03 0.04 0.02 0.03 0.03 0.03 0.03 0.03 0.04 0.03

0.04 0.04 0.65 0.04 0.02 0.03 0.03 0.03 0.03 0.03 0.04 0.03

0.03 0.04 0.03 0.65 0.02 0.03 0.03 0.03 0.03 0.04 0.04 0.04

0.03 0.03 0.03 0.03 0.68 0.03 0.04 0.03 0.03 0.03 0.03 0.03

0.03 0.03 0.03 0.03 0.03 0.65 0.04 0.03 0.03 0.03 0.03 0.03

0.04 0.04 0.04 0.04 0.04 0.05 0.55 0.04 0.04 0.04 0.04 0.04

0.03 0.03 0.03 0.03 0.03 0.03 0.04 0.66 0.03 0.03 0.03 0.03

0.03 0.04 0.03 0.04 0.02 0.03 0.03 0.03 0.63 0.04 0.04 0.04

0.04 0.04 0.04 0.04 0.03 0.03 0.03 0.03 0.04 0.59 0.05 0.04

0.04 0.04 0.04 0.04 0.03 0.03 0.03 0.03 0.04 0.04 0.61 0.04

0.04 0.04 0.04 0.04 0.03 0.03 0.04 0.03 0.04 0.04 0.05 0.59

TARGET 1TARGET 2TARGET 3TARGET 4TARGET 5TARGET 6TARGET 7TARGET 8TARGET 9TARGET10TARGET11 OTHER

 TARGET 1

 TARGET 2

 TARGET 3

 TARGET 4

 TARGET 5

 TARGET 6

 TARGET 7

 TARGET 8

 TARGET 9

 TARGET 10

 TARGET 11

NOT-IN-LIB

MI ID SAR

0.69 0.1 0.05 0.02 0.02 0.02 0.02 0.04 0.02 0 0.02 0

0.07 0.66 0.12 0.01 0.02 0.03 0 0.02 0.04 0 0.03 0.01

0.04 0.13 0.63 0.03 0 0 0 0.02 0.06 0.01 0.04 0.03

0.02 0.01 0.03 0.65 0 0 0 0 0.08 0.02 0.16 0.03

0.02 0.04 0 0 0.73 0.16 0.05 0 0 0 0 0

0.02 0.04 0 0 0.17 0.62 0.14 0 0 0 0 0

0.04 0 0 0 0.1 0.26 0.6 0 0 -0 0 0

0.05 0.04 0.05 0 0 0 0 0.82 0.03 0 0 0.01

0.01 0.05 0.07 0.09 0 0 0 0.02 0.7 0 0.05 0.01

0 0 0.04 0.04 0 0 -0 0 0 0.54 0.19 0.19

0.01 0.02 0.02 0.08 0 0 0 0 0.02 0.04 0.75 0.05

0 0.01 0.04 0.03 0 0 0 0.01 0.01 0.09 0.11 0.7

TARGET 1TARGET 2TARGET 3TARGET 4TARGET 5TARGET 6TARGET 7TARGET 8TARGET 9TARGET10TARGET11 OTHER

 TARGET 1

 TARGET 2

 TARGET 3

 TARGET 4

 TARGET 5

 TARGET 6

 TARGET 7

 TARGET 8

 TARGET 9

 TARGET 10

 TARGET 11

NOT-IN-LIB

MI ID PCNN

Single look Multiple Looks

Figure 4.13

B. Kahler and E. Blasch, “Decision-Level Fusion Performance Improvement from Enhanced HRR Radar
Clutter Suppression,” J. of. Advances in Information Fusion, Vol. 6, No. 2, pp. 101-118, Dec. 2011.

* See Chapter 9 for more details

© Majumder, Blasch, Garren

Convolutional Neural Network

Pooling

Convolution Layer Subsampling Layer Convolution Layer Subsampling layer Fully Connected MLP
Pooling

(S1) 3 feature MapsInput Layer
(C1) 4 feature

Maps

(S2) 6 feature Maps

Fully

Connected

Fully

Connected

Output
Predictions

(C2) 6 feature Maps

Car (0.03)

Truck (0.07)

Tank (0.9)

Method Convolutional Layers Reference
AlexNet 5 Krizhevsky, et al. 2012
VGG (Visual Geometry Group) 19 Simonyan, et al., 2014
GoogleNet 22 Szegedy, et al., 2015
ResNet(Residual Network) 34 He, et al., 2015

Figure 4.14• Relevance (Spatial)

© Majumder, Blasch, Garren

CNN Processing

1 -1 -1

-1 1 -1

-1 -1 1

Filter 1

0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0

0 0 0 1 1 0 0 0 0

0 0 0 1 1 0 0 0 0

0 0 0 0 1 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

Image

Stride = 2

0 1 -1 0

0 -1 -1 0

0 -3 0 0

0 0 0 0

Convolution

2 x 2 image

1 0

0 0

Max Pooling

-1 1 -1

-1 1 -1

-1 1 -1

Filter 2
0 -1 -1 0

0 -1 -3 0

0 -1 -2 0

0 0 0 0
Each filter

is a channel

0 0

0 0

1

0

0

0

0

0

0

0

Full Connect

Softmax

Figure 4.15
Three hyperparameters control the size of the output channel: the depth K (connections), stride S (spatial),
and zero-padding P (output size). Number of neurons : N = [(T – K + 2P)/S + 1]

0 1

© Majumder, Blasch, Garren

Convolutional Neural Network

(1) Convolutional layer
A convolution layer convolves the result: C = I*F where it is pointwise multiplication (row*column)

1 -1 -1

-1 1 -1

-1 -1 1

Filter 1Image

Convolution

1

= [0(1)+0(-1)+0(-1)] + [0(-1)+0(1)+0(-1)] + [0(-1)+0(-1)+(1)(1)] = 1

© Majumder, Blasch, Garren

Convolutional Neural Network (2)

(1) Convolutional layer

27

1 -1 -1

-1 1 -1

-1 -1 1

Filter 1

0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0

0 0 0 1 1 0 0 0 0

0 0 0 1 1 0 0 0 0

0 0 0 0 1 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

Image

Stride = 2

Convolution

-1 1 -1

-1 1 -1

-1 1 -1

Filter 2
0 -1 -1 0

0 -1 -3 0

0 -1 -2 0

0 0 0 0

00 1 -1 0

0 -1 -1 0

0 -3 0 0

0 0 0 0

1

© Majumder, Blasch, Garren

Convolutional Neural Network
(2) Pooling layer

• The pooling layer spatially resizes the input and operates independently on every input depth.
The most common filters size is 2×2 where a stride of S = 2 downsamples at every input depth
slice in the input by 2 along both width and height, discarding 75% of the activations.

• Using the Rectified Linear Unit (ReLU), then the non-saturating activation function
• f(x) = max(0, x) removes negative values from an activation map by setting them to zero.
• The max function increases the nonlinear properties of the overall network decision without

affecting the receptive fields of the convolution layer.
• Each filter the pooling layer goes from 44 to 2×2.

0 1 -1 0

0 -1 -1 0

0 -3 0 0

0 0 0 0

Convolution

2 x 2 image
1 0

0 0

Max Pooling

4 x 4 image

© Majumder, Blasch, Garren

Convolutional Neural Network (3)

0 1 -1 0

0 -1 -1 0

0 -3 0 0

0 0 0 0

Convolution

2 x 2 image

Each filter is a
channel

1 0

0 0

Max Pooling

0 -1 -1 0

0 -1 -3 0

0 -1 -2 0

0 0 0 0

0 0

0 0

1

0

0

0

0

0

0

0

Full Connect

Softmax

© Majumder, Blasch, Garren

Convolutional Neural Network
(3) Fully Connected Layer

• where yi is the output from the last hidden layer for corresponding target c, zc(·) is the final activation
function, and k is the one of target classes among the set [1, …, K].

• Neurons in a fully connected layer
have connections to all activations in
the previous layer, as seen in the
regular ANN.

• The activations are given by a
matrix multiplication followed by a
vector addition of a bias offset. The
final layer is the ‘"loss layer,” which
penalizes the deviation between the
predicted (output) and the true
labels. Many CNNs use the Softmax
loss to predict a single class from K
mutually exclusive classes:

© Majumder, Blasch, Garren

Convolutional Neural Network

• Drop Out:
• To prevent overfitting, at each training stage, individual nodes are either "dropped out" of the net

with probability (1 − p) or kept with probability p , reducing the network size.
• In the training stages, the probability that a hidden node will be dropped is usually 0.5.
• The removed nodes are then reinserted into the network with their original weights for testing.
• DropOut Layer improves training speed by reducing node interactions, allowing them to learn more

robust features that better generalize to new data.

Method Performance (%) Reference
SOC EOC-1 EOC-2

Pulse Couple Neural Network (PCNN) 87.0 75 67 Blasch, 1998
Conditional False Alarm Rate (CFAR) 89.0 91 85 Mossing, et al., 1998
Support Vector Machine (SVM) 90.0 81 75 Zhao, et al., 2001
Conditional Gaussian 92.0 80 79 O'Sullivan, et al., 2001
AdaBoost 92.0 82 78 Sun, et al., 2007
Bayesian compressive sensing (BCS) 92.0 - - Zhang, et al., 2013
Sparse Representation of Monogenic Signal (MSRC) 93.6 88.4 - Dong, et al. 2014
Iterative graph thickening (IGT) 95.0 85 80 Srinivas, et al., 2014
Modified Polar Mapping Classifier (M-PMC) 98.8 - 97.3 Park, et al., 2014
Monogenic scale space (MSS) 96.6 98.2 - Dong, et al., 2015
A-ConvNets 99.1 96.1 98.9 Chen, et al., 2016
AFRLeNet 99.4 Profeta et al., 2016

Profeta et al. achieved a Portability of Correct Classification (PCC) of 99.4% for the SOC for a 7- target MSTAR set.
 using a dropout layer to AlexNet, which they called AFRLeNet

© Majumder, Blasch, Garren

x1

y1

h

A

f1

RNN Loop

Recurrent Neural Network

Figure 4.16

• Persistence (Temporal)
- RNNs maintains information persistence via loops, as with Gaussian

Mixture Models (GMM).
• A given neural network A receives an input xt and outputs a value yt, according

to a hidden (latent relationship) ht.
• By passing data through iterative steps in the network, the loop is realized,

and hence is recurrent.

• Approaches
• Boltzmann Machine – NN that receives stochastic inputs
• Long Short-term Memory (LSTM) – locally-stored short-term results
• Gated Recurrent Unit (GRU) – efficient LSTM/RNN
• Reservoir Computing - (e.g., Liquid State Machine) – for low power

applications
• Spiking Neural Network - randomly connected neurons

© Majumder, Blasch, Garren

Sequence of Inputs

x1

y1

h1

A

f1

Sequence of Outputs

x2

y2

h2

A

f2

x3

y3

h3

A

f3

xt

yt

ht

A

ft

Some information is
passed from one

subunit to the next

Start of sequence
marker

End of
sequence

marker
x1

y1

h

A

f1

RNN Loop RNN Rolled Out

Recurrent Neural Network (2)
(a) RNN Loop, (b) RNN rolled out Figure 4.16

© Majumder, Blasch, Garren

Recurrent Neural Network

A A

Xt+1

ht+1

XtXt-1

Ht-1 ht

Neural
Network Layer

Pointwise
Operation

Vector
Transfer

Concatenate Copy



tanh

Output in [0, 1]

Output in [-1, +1]

+

tanh

Figure 4.17

LSTM, there are three functions: (1) vector processing, (2) NN layer operations, and (3) pointwise operations
 Vector operations include concatenation (merging) and copying (forking) of entire vector from one node to the next.
 NN layers conduct the learning operations such as sigmoid () and tanh weighting.
 Pointwise operations include vector addition(+) and multiplication ().

© Majumder, Blasch, Garren

RF Signal Data Collection

Signal Processing and Data Collection

Random
Signal QPSK Mod Transmitters Receiver

Dataset
Generation

Data

GNU
Radio

USRP 9210
/PLUTO

RTL-SDR RTL-SDR
Python Library

(#samples, 2 n
sample size)

Figure 4.18
• Example
• Radio Frequency Adversarial Learning (RFAL) framework exploits transmitter specific “signatures” like

the in-phase (I) and quadrature (Q) imbalance (i.e., the I/Q imbalance) present in all transmitters

• Learns feature representations using a deep neural network (DNN) that uses the I/Q data from received
signals.

• After elimination of the adversarial transmitters, the trusted transmitters are classified using a
convolutional neural network (CNN), a fully connected DNN, and a recurrent neural network (RNN).

Transmitters Type Rows Columns SNR Size
Test 1 4 USRP B210 transmitters 160K 2048 30 dB 6.8 GB
Test 1 8 USRP B210 transmitters 320K 2048 30 dB 13.45 GB
Test 2 1 USRP B210 transmitter 80K 2048 30 dB 3.31 GB
Test 2 1 PLUTO transmitter 80K 2048 30 dB 2.85 GB
Test 3 8 USRP B210 transmitters 320K 2048 20, 10, 0 dB 13 GB

© Majumder, Blasch, Garren

RF Deep Learning Architectures
Deep Neural Network

Signal Processing
and Data
Collection

In
p

u
t

(none, 2048) (none,1024) (0.5) (none, 512) (0.5) (none, 8) (8)

D
en

se
 t

an
h

D
ro

p
o

u
t

D
en

se
 t

an
h

D
ro

p
o

u
t

Decisions

So
ft

m
ax

O
u

tp
u

t

Convolutional Neural Network

Signal Processing
and Data
Collection

In
p

u
t

(none, 1024, 2) (1024) (512) (256) (512) (256) (8) (8)

C
o

n
v

La
ye

r
1

C
o

n
v

La
ye

r
2

C
o

n
v

La
ye

r
3

Fu
lly

 C
o

n
n

ec
t

Decisions

Fu
lly

 C
o

n
n

ec
t

O
u

tp
u

t

Flatten

Fu
lly

 C
o

n
n

ec
t

Recurrent Neural Network

Signal Processing
and Data
Collection

In
p

u
t

(none, 2048) (1024) (0.5) (256) (0.5) (512) (256) (0.5) (8) (8)

LS
TM

 L
av

er
 1

LS
TM

 L
ay

er
 2

Fu
lly

 C
o

n
n

ec
t

Decisions

Fu
lly

 C
o

n
n

ec
t

O
u

tp
u

t

B
at

ch

N
o

rm
al

iz
at

io
n

Fu
lly

 C
o

n
n

ec
t

D
ro

p
o

u
t

D
ro

p
o

u
t

D
ro

p
o

u
t

Figure 4.19

© Majumder, Blasch, Garren

RF Deep Learning Architectures

Deep Neural Network

Convolutional Neural Network

Recurrent Neural Network

Figure 4.19

Accuracy Comparison of NN Approaches to
classify 4 and 8 transmitters

#Trans Model #Parameters Acc (%) Time (min)
4 CNN 38 Million 89.07 ~ 25
4 DNN 6.8 Million 96.49 ~ 12
4 RNN-LSTM 14.2 Million 97.40 ~ 12
4 RNN-GRU 10.7 Million 97.85 ~ 12
8 CNN 38 Million 81.59 ~ 30
8 DNN 6.8 Million 94.60 ~ 15
8 RNN-LSTM 14.2 Million 95.78 ~ 16
8 RNN-GRU 10.7 Million 97.06 ~ 16

© Majumder, Blasch, Garren

Long Short-Term Memory

A A

Xt+1

ht+1

XtXt-1

Ht-1 ht



tanh
Neural

Network Layer
Pointwise
Operation

Vector
Transfer

Concatenate Copy
Output in [0, 1]

Output in [-1, +1]

“Bits of
memory”

+



tanh


tanh 

Combine with
transformed xt

Decide
what to
forget

Decide
what to
insert

ct-1
Ct+1

ct

ht-1
ht

ht+1

ft it ct
~

Ot

Figure 4.20

© Majumder, Blasch, Garren

Xt





Decide
what to
forget

ct-1

ht-1

ft

Step 1: Forget Gate Layer
 (Data to remove)

Xt



tanh

Decide
what to
insert

ct-1

ht-1

it ct
~

Step 2: Update Gate
 (Data to store)

Long Short-Term Memory

ft =  (Wf•[ht−1, xt] + bf) it =  (Wi• [ht−1, xt] + bi)

= tanh (WC• [ht−1, xt] + bC)

Features Candidate
(features)

© Majumder, Blasch, Garren

Xt



tanh

Decide
what to
insert

ct-1

ht-1

it ct
~

+



Decide
what to
insert

ct-1 ct

ft it ct
~

Long Short-Term Memory

Step 2: Update Gate
 (Data to store)

it =  (Wi• [ht−1, xt] + bi)

= tanh (WC• [ht−1, xt] + bC)

Candidate
(features)

The old state ft is multiplied, thereby forgetting
information that is deemed to be unimportant.

Ct = ft*Ct−1 + it*

ft =  (Wf•[ht−1, xt] + bf) Step 1:

© Majumder, Blasch, Garren

Step 3: Output Gate (Data to Pass)

Xt

ht



tanh



Combine with
transformed xt

ct-1 ct

ht-1
ht

Ot

Long Short-Term Memory

The filtered output includes a sigmoid layer that decides “what” and a tanh layer
(e.g., {-1 +1}) to determine “how much”.

ot =  (Wo• [ht−1, xt] + bo)

ht = ot*tanh(Ct)

© Majumder, Blasch, Garren

Gated Recurrent Unit (GRU)

Xt

ht

+



tanh


tanh 

Combine with
transformed xt

ct-1 ct

ht-1

ft it ct
~

Ot

Decide
what to

reset

- 1



One Sequence: LSTM cell drawback is the need for additional memory

GRU have one less gate than LSTMs
• Combines the “forget” and “input” gates into a single

“update gate.”
• Simply exposes the full hidden content without any control.

“reset gate” (it),

“update gate” (ft),

“cell state” memory (ct)

“recurrent” (ct)

it =  (Wxi xt+ Whi ht−1 + bi)

ft= (Wx f xt + Whf ht−1 + bf)

Ct = tanh (Wx c xt + Whc(ftht−1))

ht = (1 - it)Ct+ (it) ht−1

© Majumder, Blasch, Garren

LSTM SAR Example

target

Airborne SAR

x1

y1

h1

A

f1

x2

y2

h2

A

f2

x3

y3

h3

A

f3

xt

yt

ht

A

ft

Multi-Aspect Bidirectional LSTM

Sequence of
Decision
Outputs

Multi-Aspect
Feature

Learning

Feature
Extraction

Sequence of
Multi-aspect

Images

0 90 180 270

Figure 4.21

Multi-aspect aware Bidirectional Long Short-Term Memory (LSTM) recurrent neural networks (MA-BLSTM).

© Majumder, Blasch, Garren

Boltzmann Machine

v1

v2

v3

h2

f1

f2

f3

h1

h2

h3

h1

h3

a

a3

(1)

(1)

(2)

(2)

x1

x2

Bias

(3)

b1

b2

(3)

Figure 4.22

The difference in the global energy results from a single unit i equaling 0 (off) versus 1 (on)

• wij is the connection strength between unit j and unit i.

• si is the state, si {0,1} of unit i, and

• i is the bias of unit i in the global energy function, and− is the

activation threshold for the unit.

© Majumder, Blasch, Garren

Deep Boltzmann Machine

Input Output
 Hidden(1) Hidden(2) Hidden(3)

v1

v2

v3

h2

f1

f2

f3
h2

vi hj hl hm

h3

(1)

W12

h1

h2

h3

W22

(1)

W21

W23

ba b

W32

W12

a3

(1)

(1)

(2)

(2)

(2)

(2)

(2)

(2)

x1

x2

(1)

BiasBias Bias

(3)

(3)

(2)

Figure 4.23

ADVANTAGE
Learn complex
relations from
limited label data
by doing
processing in both
directions

DISADVANTAGE
Slow as from the
multiple MCMC
steps

© Majumder, Blasch, Garren

Chapter 4 Outline
4.1 Introduction 97
 4.1.1 Deep Neural Networks 98
 4.1.2 Autoencoder 100
4.2 Neural Networks 105
 4.2.1 Feed Forward Neural Networks 105
 4.2.2 Sequential Neural Networks 114
 4.2.3 Stochastic Neural Networks 119
4.3 Reward-Based Learning 123
 4.3.1 Reinforcement Learning 123
 4.3.2 Active Learning 126
 4.3.3 Transfer Learning 126
4.4 Generative Adversarial Networks 130
4.5 Summary 136

© Majumder, Blasch, Garren

Learning Approaches

Model-based Learning Reinforcement Learning

Search
(features)

Match

Predict
(features)

Extract
(features)

Models

Images

Reinforcement
Learning

Recognition

Evaluate
(Parameters)

Extract
(Parameters)

Models

Image Ground Truth

Performance

Decision

Q-Value

DecisionImages

Figure 4.24

RL: Value function V (s) describes the
expected return starting with state s0 =
s, and successively follows policy .

© Majumder, Blasch, Garren

Transfer Learning

Source Tasks Target Tasks

Knowledge
Learning SystemTransfer

2S1 T62 vs. ZIL131

D7

BTR60

Figure 4.25

Transfer learning: Active Learning (Human to Machine)

 Domain adaptation (Machine to Machine)

© Majumder, Blasch, Garren

Transfer Learning

Transfer Learning

Unsupervised
Transfer Learning

Inductive Transfer LearningTransductive Transfer Learning

Labeled Data

None in source and
target domain

Available in
Target domain

Available in
Source domain

Labeled Data in a
Source domain

YES NO

Self-taught
Learning

Source and target
tasks learned

simultaneously

Multi-Task
Learning

Assumption
Different
domains

but single
task

Single domain and
single task

Domain
Adaptation

Sample Selection Bias
Covariance Shift

Target task learned
from sampling

Target task learned
by adaptation

Figure 4.26

© Majumder, Blasch, Garren

Chapter 4 Outline
4.1 Introduction 97
 4.1.1 Deep Neural Networks 98
 4.1.2 Autoencoder 100
4.2 Neural Networks 105
 4.2.1 Feed Forward Neural Networks 105
 4.2.2 Sequential Neural Networks 114
 4.2.3 Stochastic Neural Networks 119
4.3 Reward-Based Learning 123
 4.3.1 Reinforcement Learning 123
 4.3.2 Active Learning 126
 4.3.3 Transfer Learning 126
4.4 Generative Adversarial Networks 130
4.5 Summary 136

© Majumder, Blasch, Garren

Generative Adversarial Network

Is D
Correct

?

Latent Space

MSTAR
Training

Set

G (Generator)

D (Discriminator)

Fine Tune Training

Generated
Fake

Samples

Noise (n)

Training
data (z)

Real
or

Fake

log(x)

Pre-trained

Predicted
labels

Noise
Vector

Figure 4.30

• In GANs, (uses an implicit transition operator to determine the decision density)
• MLP generator creates new data instances,
• MLP discriminator evaluates them for authenticity. That is. the discriminator decides if each instance of data

under review belongs to the actual training dataset:

© Majumder, Blasch, Garren

Generative Densities

Maximum
Likelihood

Explicit
Density

Implicit
Density

Tractable
Density

Approximate
Density

Markov Chain Variational

Approximate
Density

Belief Networks

CNN

Markov Chain Direct

Generative
Stochastic Network

Boltzmann
Machine

Generative
Adversarial Network

Figure 4.29

Variational
Autoencoder

© Majumder, Blasch, Garren

Generative Adversarial Network (GAN)

• In GANs, (uses an implicit transition operator to determine the decision density)
• MLP generator creates new data instances,
• MLP discriminator evaluates them for authenticity. That is. the discriminator decides if each instance of data

under review belongs to the actual training dataset:

• Discriminative models learn the boundary between classes, and

• Generative models model the distribution of individual classes

Figure 4.27

Deep generative models, such as graphical models,
• Deep Belief Networks: utilize Bayesian reasoning in a Markov Chain to determine p(c|y) = [p(y | c) p(c)] /

p(y); where p(y | c) is the likelihood and p(c) is the prior instances of a class.
• Deep Belief Network (DBN) : As Deep Boltzmann machine (with stochastic variables of the uncertainty

and bias on c and y) is impossible to compute, so a DBN is used for each layer

 p(y, h1, h2, …, hn, c) = p(y|h1)p(h1|h2) … p(hn-2|hn-1)p(hn-1|hn) p(hn|c) p(c)

• The DBN gives tractable results; however, other methods discussed provide approximate densities p(y| c)
using the maximum likelihood.

© Majumder, Blasch, Garren

Deep Belief Network

Visible Hidden 1 Hidden2 Hidden3 Class

fn-1

f1

f2

f3

fn

c2

c1

c3

Car

Truck

Tank

Input Output

Directed BN Directed BN Directed BN

Figure 4.28

DBN is used for each layer: p(y, h1, h2, …, hn, c) = p(y|h1)p(h1|h2) … p(hn-2|hn-1)p(hn-1|hn) p(hn|c) p(c)

© Majumder, Blasch, Garren

Generative Adversarial Network (GAN)

GAN Types:
• Given some of the features, they predict the associated features (GMM, Latent Dirichlet Allocation)
• Given a label, they predict the associated features (Naive Bayes, autoregressive), or
• Given a hidden representation, they predict the associated features (VAE, GAN)

GAN zoo (https://github.com/hindupuravinash/the-gan-zoo) provides a listing of available GANs

Generator

Discriminator

Min-Max Game

https://github.com/hindupuravinash/the-gan-zoo

© Majumder, Blasch, Garren

Generative Adversarial Network (GAN)

Comparisons (adapted from Goodfellow, et al., [46])

GAN zoo (https://github.com/hindupuravinash/the-gan-zoo) provides a listing of available GANs

Deep directed
graphical models

Deep undirected
graphical models

Generative
Autoencoders

Adversarial Models

Model Design Most models
difficult

Careful design to
ensure properties

Any differential function
is theoretically permitted

Any differential function
is theoretically permitted

Training Inference needed
during training

Inference needed.
MCMC approximates
partition function
gradient

Enforced tradeoff
between mixing and
power of reconstruction
generations

Synchronizing the
discriminator with the
generator

Inference Approximate
inference

Variational inference MCMC-based inference Approximate inference

Sampling Available Requires Markov
Chain

Requires Markov Chain Available

Evaluation p(z) Intractable, but can
be approximated

Intractable, but can
be approximated

Not explicitly
represented, may be
approximated with
Parzen density
estimation

Not explicitly
represented, may be
approximated with
Parzen density
estimation

https://github.com/hindupuravinash/the-gan-zoo

© Majumder, Blasch, Garren

Generative Adversarial Network (GAN)

Steps:

Step 1: The generator takes in random numbers
and returns an image.

Step 2: The generated image (data) is fed into the
discriminator alongside a stream of images
taken from the actual, ground-truth dataset.

Step 3: The discriminator injects both real and
fake images and returns probabilities, each
being a number between 0 and 1, with

 1 representing a prediction of authenticity,
 0 representing the imposter.

 GAN zoo (https://github.com/hindupuravinash/the-gan-zoo) provides a listing of available GANs

https://github.com/hindupuravinash/the-gan-zoo

© Majumder, Blasch, Garren

EO with SAR Image

• From Arnold, J., L. Moore, and E. Zelnio. “Blending Synthetic and
Measured Data Using Transfer Learning for Synthetic Aperture Radar (SAR)
Target Classification,” Proc. SPIE, Vol.10647, 2018.

Figure 4.27
• GAN Example

© Majumder, Blasch, Garren

Takeaway Message

Method Performance (%) Reference
SOC EOC-1 EOC-2

Pulse Couple Neural Network (PCNN) [35 tgts] 87.0 75 67 Blasch, 1998
A-ConvNets 99.1 96.1 98.9 Chen, et al., 2016
AFRLeNet 99.4 Profeta et al., 2016

CNN-SVM 99.5 95.75 Amrani, et al., 2017

VGG-S1 98.8 94.15 Amrani, et al., 2017

VGG-S, Feature Fusion, KNN 99.82 96.16 Amrani, et al., 2017
Multi-aspect aware bidirectional LSTM RNN 99.90 - 99.59 Zhang, et al. 2017
Joint Supervised Dictionary 97.65 98.39

GAN-CNN 97.53 Zheng, C et al, 2019

MGAN-CNN 97.81 Zheng, C et al, 2019

Triple GAN and Integrated GAN 99.9 Gao, F. Et al 2019

© Majumder, Blasch, Garren

Chapter 4 Outline
4.1 Introduction 97
 4.1.1 Deep Neural Networks 98
 4.1.2 Autoencoder 100
4.2 Neural Networks 105
 4.2.1 Feed Forward Neural Networks 105
 4.2.2 Sequential Neural Networks 114
 4.2.3 Stochastic Neural Networks 119
4.3 Reward-Based Learning 123
 4.3.1 Reinforcement Learning 123
 4.3.2 Active Learning 126
 4.3.3 Transfer Learning 126
4.4 Generative Adversarial Networks 130
4.5 Summary 136

	Slide 1:
	Slide 2: Lecture Outline
	Slide 3: Deep Learning (DL) Based Radio Frequency (RF) Automatic Target Recognition (ATR)
	Slide 4: Chapter 4 Outline
	Slide 5: Deep Learning
	Slide 6: Deep Learning
	Slide 7: Takeaway Message
	Slide 8: DNN Model (Connected)
	Slide 9: DNN Model (Hidden Layers)
	Slide 10: Types of Deep Learning
	Slide 11: Autoencoder (Unsupervised Learning)
	Slide 12: Autoencoder (Unsupervised Learning)
	Slide 13: Sparse Autoencoder
	Slide 14: Autoencoder Method
	Slide 15: Chapter 4 Outline
	Slide 16: Feed Forward NN
	Slide 17: Multi-Layer Perceptron
	Slide 18: Pulse Coupled NN
	Slide 19: PCNN on MSTAR Data
	Slide 20: PCNN Results
	Slide 21: PCNN Results
	Slide 22: PCNN Results
	Slide 23: Confusion Matrix Fusion
	Slide 24: Convolutional Neural Network
	Slide 25: CNN Processing
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31: Convolutional Neural Network
	Slide 32
	Slide 33
	Slide 34: Recurrent Neural Network
	Slide 35: RF Signal Data Collection
	Slide 36: RF Deep Learning Architectures
	Slide 37: RF Deep Learning Architectures
	Slide 38: Long Short-Term Memory
	Slide 39: Long Short-Term Memory
	Slide 40: Long Short-Term Memory
	Slide 41: Long Short-Term Memory
	Slide 42: Gated Recurrent Unit (GRU)
	Slide 43: LSTM SAR Example
	Slide 44: Boltzmann Machine
	Slide 45: Deep Boltzmann Machine
	Slide 46: Chapter 4 Outline
	Slide 47: Learning Approaches
	Slide 48: Transfer Learning
	Slide 49: Transfer Learning
	Slide 50: Chapter 4 Outline
	Slide 51: Generative Adversarial Network
	Slide 52: Generative Densities
	Slide 53: Generative Adversarial Network (GAN)
	Slide 54: Deep Belief Network
	Slide 55: Generative Adversarial Network (GAN)
	Slide 56: Generative Adversarial Network (GAN)
	Slide 57: Generative Adversarial Network (GAN)
	Slide 58: EO with SAR Image
	Slide 59: Takeaway Message
	Slide 60: Chapter 4 Outline

