Machine Learning Techniques for Radar Automatic Target Recognition (ATR)

Uttam K. Majumder

Chapter 4: Deep Learning

U. Majumder, E. Blasch, D. Garren, *Deep Learning for Radar and Communications Automatic Target Recognition*, Artech House, 2020.

Lecture Outline

- Radio Frequency ATR: Past, Present, and Future:
 20 min
- 2. Mathematics for Machine Learning / Deep Learning:20 min
- 3. Review of ML Algorithms: 25 min
- 4. Deep Learning Algorithms: 30 min
- 5. RF Data for ML Research: 15 min
- 6. DL for Single Target Classification: 25 min
- 7. DL for Many Targets Classification: 25 min
- 8. RF Signals Classification: 20 min
- 9. RF ATR Performance Evaluation: 25 min
- 10. Emerging ML Algorithms for RF ATR: 35 min

Deep Learning (DL) Based Radio Frequency (RF) Automatic Target Recognition (ATR)

Chapter 4 Outline

4.1 Introduction	97
4.1.1 Deep Neural Networks	98 Plant Muniter - Dat? Next Same
4.1.2 Autoencoder	100 Automatic Target Recognition
4.2 Neural Networks	105
4.2.1 Feed Forward Neural Networks	105
4.2.2 Sequential Neural Networks	114
4.2.3 Stochastic Neural Networks	119
4.3 Reward-Based Learning	123
4.3.1 Reinforcement Learning	123
4.3.2 Active Learning	126
4.3.3 Transfer Learning	126
4.4 Generative Adversarial Networks	130
4.5 Summary	136

Deep Learning

• Deep Learning – took off in 2012 from the CVPR competition (Univ. Toronto)

Deep Learning

Hidden Layer

- 1986 Restricted Boltzman Machine (Smolensky)
- 1986 Recurrent Neural Networks (Jordan)
- 1986 Multilayer Perceptron, Autoencoder (Rumelhart, Hinton, Williams)
- 1987 Bidirectional RNN (Schuster and Paliwal)
- 1988 Convolutional Neural Network, LeNet (Lecun)
- 1997 Long Short-Term Memory (Hochreiter and Schmidhuber)
- 2006 Deep Belief (Neural) Networks (Hinton)
- 2012 DNN wins Image Competition
- 2012 Deep Boltzmann Machines (Salakhutdinov and Hinton)
- 2014 Generative Adversarial Networks (Goodfellow)
- 2017 Capsule Networks (Sabour, Frost, Hinton)
- Transfer learning, Zero-Shot Learning

<u>What are convolutional</u> <u>neural networks (CNN)? –</u> <u>TechTalks</u> (bdtechtalks.com)

Takeaway Message

Method	Perform	ance (%)		Reference
	SOC	EOC-1	EOC-2	
Pulse Couple Neural Network (PCNN) [35 tgts]	87.0	75	67	Blasch, 1998
A-ConvNets	99.1	96.1	98.9	Chen <i>, et al</i> ., 2016
AFRLeNet	99.4			Profeta <i>et al.,</i> 2016
CNN-SVM	99.5	95.75		Amrani <i>, et al.,</i> 2017
VGG-S1	98.8	94.15		Amrani <i>, et al.,</i> 2017
VGG-S, Feature Fusion, KNN	99.82	96.16		Amrani, <i>et al</i> ., 2017
Multi-aspect aware bidirectional LSTM RNN	99.90	-	99.59	Zhang <i>, et al</i> . 2017
Joint Supervised Dictionary	97.65	98.39		
GAN-CNN	97.53			Zheng, C et al, 2019
MGAN-CNN	97.81			Zheng, C et al, 2019
Triple GAN and Integrated GAN	99.9			Gao, F. Et al 2019

DNN Model (Connected)

Hidden2

Hidden3

Output

Hidden 1

Input

Figure 4.1

DNN Model (Hidden Layers)

Figure 4.2

Types of Deep Learning

Generative – form features from low-dimensional space **Discriminative** – determine important features among choices

- Deep Belief Networks (DBN) Multi-Layer Perceptron
- Deep Boltzmann Machine
- Pulse-coupled NN (PCNN)

• Autoencoder

• Deep Neural Network (DNN) • Recurrent NN (RNN)

• Deep stacking Nets (DSN)

• Convolutional NN (CNN)

Figure 4.3

Contemporary – Active learning, Transfer Learning Generative Adversarial Networks (GANs)

Autoencoder (Unsupervised Learning)

Autoencoder (Unsupervised Learning)

 $\mathcal{L}(\mathbf{x}, \mathbf{x}') = \|\mathbf{x} - \sigma' (\mathbf{W}'([\sigma(\Omega(h))] + \mathbf{b}')\|^2$

- An autoencoder is an unsupervised learning model that does not require labels to predict y = $f(\mathbf{x})$, but rather minimizes the difference between the input **x** and the output **x**'.
- **Encoder**: mapping states to features (θ : X \rightarrow F).
- **Decoder**: mapping features to outputs (ϕ : F \rightarrow X).
- Encoder-decoder: Minimize the error:

the weight and is the bias vector)

• A sparsity constraint (or penalty $\Omega(h)$)

 $\theta, \phi = \arg \min \left\| X - (\phi \cdot \theta) X \right\|^2$

unit (ReLU), hyperbolic, or sigmoid function)

by averaging **x** over some input training set

 $\mathcal{L}(\mathbf{X}, \mathbf{X}') = ||\mathbf{x} - g_{\phi}(f_{\theta}(\widetilde{X}))||^2$ vector c1 Car $f_{\theta}(x)$ $g_{\bullet}(h)$ ^c²Truck х ncoder Decoder ^c₃ Tank X' Remodel Input Output $h = f_{\theta}(\widetilde{\mathbf{x}}) = \sigma(\mathbf{W}\mathbf{x} + \mathbf{b})$ • Using a single hidden layer **h** (called the code or *latent* variables representation), the **encoder** maps the input **x** to the hidden layer (**W** is sigmoid: $\sigma(x) = 1 / [1 + \exp(-x)]$ hyperbolic tangent (tanh) $\sigma(\mathbf{x}) = [\exp(x) - \exp(-x)] / [\exp(x) + \exp(-x)]$ • where σ is an element-wise activation function (e.g., rectified linear ReLU: $\sigma(\mathbf{x}) = \max(x, 0).$ • The **decoder** stage of the maps **h** to the reconstructed model **x**': $\mathbf{x}' = \mathbf{z} = \mathbf{g}_{\mathbf{a}}(\mathbf{h}) = \mathbf{\sigma}' (\mathbf{W}'\mathbf{h} + \mathbf{b}')$ The decoder minimizes the reconstruction errors from the loss function

 $\mathcal{L}(\mathbf{X}, \mathbf{X}') = ||\mathbf{X} - g_{\phi}(f_{\theta}(\widetilde{\mathbf{X}}))||^2$

$$\mathcal{L}(\mathbf{x}, \, \mathbf{x}') = ||\mathbf{x} - \mathbf{x}'||^2$$

Sparse Autoencoder

Autoencoder Method

- Some sparsity of activation penalty terms include:
- Kullback-Leibler (KL) divergence (average activation)

$$\hat{\rho}_{j} = \frac{1}{m} \sum_{i=1}^{m} [h_{j}(x_{i})] \qquad \Omega(h) = \sum_{j=1}^{s} \text{KL}(\rho || \hat{\rho}_{j})$$

- ℓ_1 or ℓ_2 regularization (scaling parameter λ) $\Omega(h) = \lambda \Sigma_{i=1} |h_i|$
- K-sparse autoencoder (rectified linear units (ReLU))

$$\hat{x}_i = \operatorname{argmin} \|x_i - \mathbf{W}\mathbf{x}\|_2^2 \qquad s.t. \ \|\mathbf{x}\|_0 < k$$

- Autoencoders:
 - Denoising AE (distortion
 - Contractive AE (Frobenius Norm)
 - Variational AE (Bayes update)

ALGORITHM: Autoencoder INPUT: penalty term $\Omega(h)$ INITIALIZE: $\mathbf{w} = (w_1, \dots, w_n)$; $\mathbf{b} = (b_1, \dots, b_n)$ For $t = 1, 2, \dots, n$

• receive instance: $\mathbf{x}_t \in \mathbb{R}^n$

• encode:
$$h = f_{\theta}(\tilde{x}) = \sigma(\mathbf{W}\mathbf{x} + \mathbf{b})$$

- loss analysis: $\mathcal{L}(\mathbf{x}, \mathbf{x}') = \|\mathbf{x} g_{\phi}(f_{\theta}(\widetilde{\mathbf{x}}))\|^2 + \Omega(h)$
- by
 - 1. determine $\Omega(h)$

$$\hat{\rho}_{j} = \frac{1}{m} \sum_{i=1}^{m} [h_{j}(x_{i})]$$
(AE-KL)

$$\Omega(h) = \sum_{j=1}^{s} \left[\rho \log \left(\frac{\rho}{\hat{\rho}_j} \right) + (1 - \rho) \log \left(\frac{1 - \rho}{1 - \hat{\rho}_j} \right) \right]$$

- $\Omega(h) = \lambda \Sigma_{i=1} |h_i| \qquad (AE-L-norm)$
- 2. Backprop error of k largest activations

$$\hat{x}_i = \operatorname{argmin}_z \|x_i - \mathbf{W}\mathbf{x}\|_2^2$$
, $\|\mathbf{x}\|_0 < k$ (AE-KS)

• decode update: $z = g_{\phi}(\mathbf{h}) = \sigma' (\mathbf{W}'\mathbf{h} + \mathbf{b}')$

Chapter 4 Outline

4.1 Introduction	97
4.1.1 Deep Neural Networks	98 Inst. Myenter-tot ? Bean-Swelt. Same
4.1.2 Autoencoder	100 and Communications Automatic Target Recognition
4.2 Neural Networks	105
4.2.1 Feed Forward Neural Networks	105
4.2.2 Sequential Neural Networks	114
4.2.3 Stochastic Neural Networks	119
4.3 Reward-Based Learning	123
4.3.1 Reinforcement Learning	123
4.3.2 Active Learning	126
4.3.3 Transfer Learning	126
4.4 Generative Adversarial Networks	130
4.5 Summary	136

Feed Forward NN

- The methods are based on FNN
 - Multi-Layer Perceptron
 - Boltzmann NN
 - Pulse Couple NN
- New methods
 - Convolutional NN
 - Recurrent NN

Multi-Layer Perceptron

Constant Weights f_1 Net *W*_{1,1} Input Activation **Function Function** f_2 Output *W*_{2,1} W_{1,2} * y f_3 Σ W_{2,2} W_{1,3} *X*₃ Inputs Step Weighted **Function** f_{n-1} Sum *W*_{2,3} W_{n-1, 1}

0 if 0 > xf(x) = -1 if $x \ge 0$

Figure 4.7

© Majumder, Blasch, Garren

 f_n

*W*_{*n*, 1}

Pulse Coupled NN

Driving Function $D_{ik}(n) = D_{ik}(n-1) \cdot e^{-1/\tau_{D}} + V^{D} \cdot X_{i}(n) \cdot w_{ik}^{D}$ **Linking Function** $L_{ik}(n) = L_{ik}(n-1) \cdot e^{-1/\tau_L} + V^L \cdot Y_i(n) \cdot w_{ik}^L$ **Threshold Function** $\Theta_k(n) = \Theta_0 + \Theta_k(n-1) \cdot e^{-1/\tau_s} + V^s \cdot Y_k(n)$ where

 $D_k = \sum D_{ik}$ and $L_k = \sum L_{ik}$

Blasch, E. P., "Biological Information Fusion Using PCNN and Belief Filters," IEEE Intl Joint Conference on Neural Networks, vol.4, 2792 -2795, 1999.

© Majumder, Blasch, Garren

Figure 4.8

PCNN on MSTAR Data

Blasch, E. P., "Biological Information Fusion Using PCNN and Belief Filters," *IEEE Intl Joint Conference on Neural Networks*, vol.4, 2792 -2795, 1999.

PCNN Results

(a) Target Image

(b) PCNN Image

Blasch, E. P., "Biological Information Fusion Using PCNN and Belief Filters," *IEEE Intl Joint* © Majumder, Blasch, Garren Conference on Neural Networks, vol.4, 2792 -2795, 1999. Figure 4.10

PCNN Results

Figure 4.11

Blasch, E. P., "Biological Information Fusion Using PCNN and Belief Filters," IEEE Intl Joint Conference on Neural Networks, vol.4, 2792 -2795, 1999.

*360° Movie

PCNN Results

original

PCNNImage - tank 2

Figure 4.12

Blasch, E. P., "Biological Information Fusion Using PCNN and Belief Filters," *IEEE Intl Joint Conference on Neural Networks*, vol.4, 2792 -2795, 1999. *360° Movie

Confusion Matrix Fusion

Figure 4.13

I	ARGETT	ARGETT	ARGETI	ARGETT	ARGETT	SARGET I	ARGETI	7AR GET 1	ARGET	ARGETT	ARGET1	OTHER
TARGET	1 0.66	0.04	0.03	0.03	0.02	0.03	0.03	0.03	0.03	0.03	0.04	0.03
TARGET	20.04	0.65	0.03	0.04	0.02	0.03	0.03	0.03	0.03	0.03	0.04	0.03
TARGET	30.04	0.04	0.65	0.04	0.02	0.03	0.03	0.03	0.03	0.03	0.04	0.03
TARGET	40.03	0.04	0.03	0.65	0.02	0.03	0.03	0.03	0.03	0.04	0.04	0.04
TARGET	50.03	0.03	0.03	0.03	0.68	0.03	0.04	0.03	0.03	0.03	0.03	0.03
TARGET	60.03	0.03	0.03	0.03	0.03	0.65	0.04	0.03	0.03	0.03	0.03	0.03
TARGET	70.04	0.04	0.04	0.04	0.04	0.05	0.55	0.04	0.04	0.04	0.04	0.04
TARGET	80.03	0.03	0.03	0.03	0.03	0.03	0.04	0.66	0.03	0.03	0.03	0.03
TARGET	90.03	0.04	0.03	0.04	0.02	0.03	0.03	0.03	0.63	0.04	0.04	0.04
TARGET	100.04	0.04	0.04	0.04	0.03	0.03	0.03	0.03	0.04	0.59	0.05	0.04
TARGET	11 0.04	0.04	0.04	0.04	0.03	0.03	0.03	0.03	0.04	0.04	0.61	0.04
NOT-IN-L	в0.04	0.04	0.04	0.04	0.03	0.03	0.04	0.03	0.04	0.04	0.05	0.59

Single look

MI ID SAR

MI ID PCNN

ፑ	ARGETT	ARGETT	ARGETT	ARGETT	ARGETT	ARGETI	ARGETT	ARGETT	ARGET	ARGETT	ARGET1	OTHER_
TARGET	10.69	0.1	0.05	0.02	0.02	0.02	0.02	0.04	0.02	0	0.02	0
TARGET	20.07	0.66	0.12	0.01	0.02	0.03	0	0.02	0.04	0	0.03	0.01
TARGET	30.04	0.13	0.63	0.03	0	0	0	0.02	0.06	0.01	0.04	0.03
TARGET	40.02	0.01	0.03	0.65	0	0	0	0	0.08	0.02	0.16	0.03
TARGET	50.02	0.04	0	0	0.73	0.16	0.05	0	0	0	0	0
TARGET	60.02	0.04	0	0	0.17	0.62	0.14	0	0	0	0	0
TARGET	70.04	0	0	0	0.1	0.26	0.6	0	0	-0	0	0
TARGET	80.05	0.04	0.05	0	0	0	0	0.82	0.03	0	0	0.01
TARGET	90.01	0.05	0.07	0.09	0	0	0	0.02	0.7	0	0.05	0.01
TARGET 1	0 0	0	0.04	0.04	0	0	-0	0	0	0.54	0.19	0.19
TARGET 1	1 0.01	0.02	0.02	0.08	0	0	0	0	0.02	0.04	0.75	0.05
NOT-IN-LI	в О	0.01	0.04	0.03	0	0	0	0.01	0.01	0.09	0.11	0.7

Multiple Looks

B. Kahler and E. Blasch, "Decision-Level Fusion Performance Improvement from Enhanced HRR Radar Clutter Suppression," J. of. Advances in Information Fusion, Vol. 6, No. 2, pp. 101-118, Dec. 2011.

* See Chapter 9 for more details

Convolutional Neural Network

Figure 4.14

• Relevance (Spatial)

Method	Convolutional Layers	Reference
AlexNet	5	Krizhevsky, et al. 2012
VGG (Visual Geometry Group)	19	Simonyan, et al., 2014
GoogleNet	22	Szegedy, et al., 2015
ResNet(Residual Network)	34	He, et al., 2015

CNN Processing

Figure 4.15

Three hyperparameters control the size of the output channel: the depth K (connections), stride S (spatial), and zero-padding P (output size). Number of neurons : N = [(T - K + 2P)/S + 1]

Image

Stride = 2

Convolutional Neural Network (1) Convolutional layer

A convolution layer convolves the result: $C = I^*F$ where it is pointwise multiplication (row*column)

Convolution

Convolutional Neural Network (2) (1) Convolutional layer

Convolutional Neural Network (2) Pooling layer

- The pooling layer **spatially resizes** the input and operates independently on every input depth. The most common filters size is 2×2 where a stride of *S* = 2 downsamples at every input depth slice in the input by 2 along both width and height, discarding 75% of the activations.
- Using the Rectified Linear Unit (ReLU), then the non-saturating activation function
 - $f(x) = \max(0, x)$ removes negative values from an activation map by setting them to zero.
 - The **max function** increases the nonlinear properties of the overall network decision without affecting the receptive fields of the convolution layer.
- Each filter the pooling layer goes from 4×4 to 2×2.

Convolutional Neural Network (3)

Convolutional Neural Network (3) Fully Connected Layer

- Neurons in a fully connected layer have connections to all activations in the previous layer, as seen in the regular ANN.
- The activations are given by a matrix multiplication followed by a vector addition of a bias offset. The final layer is the "loss layer," which penalizes the deviation between the predicted (output) and the true labels. Many CNNs use the *Softmax* loss to predict a single class from *K* mutually exclusive classes:

• where y_i is the output from the last hidden layer for corresponding target c, $z_c(\cdot)$ is the final activation function, and k is the one of target classes among the set [1, ..., K].

Convolutional Neural Network

• Drop Out:

- To prevent overfitting, at each training stage, individual nodes are either "dropped out" of the net with probability (1 p) or kept with probability p, reducing the network size.
- In the training stages, the probability that a hidden node will be dropped is usually 0.5.
- The removed nodes are then reinserted into the network with their original weights for testing.
- DropOut Layer **improves training speed** by reducing node interactions, allowing them to learn more robust features that better generalize to new data.

Method	Per	formance	(%)	Reference
	SOC	EOC-1	EOC-2	
Pulse Couple Neural Network (PCNN)	87.0	75	67	Blasch, 1998
Conditional False Alarm Rate (CFAR)	89.0	91	85	Mossing, <i>et al</i> ., 1998
Support Vector Machine (SVM)	90.0	81	75	Zhao, <i>et al.,</i> 2001
Conditional Gaussian	92.0	80	79	O'Sullivan, <i>et al</i> ., 2001
AdaBoost	92.0	82	78	Sun <i>, et al.,</i> 2007
Bayesian compressive sensing (BCS)	92.0	-	-	Zhang <i>, et al</i> ., 2013
Sparse Representation of Monogenic Signal (MSRC)	93.6	88.4	-	Dong <i>, et al</i> . 2014
Iterative graph thickening (IGT)	95.0	85	80	Srinivas, <i>et al</i> ., 2014
Modified Polar Mapping Classifier (M-PMC)	98.8	-	97.3	Park, <i>et al</i> ., 2014
Monogenic scale space (MSS)	96.6	98.2	-	Dong <i>, et al.,</i> 2015
A-ConvNets	99.1	96.1	98.9	Chen <i>, et al.,</i> 2016
AFRLeNet	99.4			Profeta <i>et al.,</i> 2016

Profeta *et al.* achieved a Portability of Correct Classification (PCC) of 99.4% for the SOC for a 7- target MSTAR set. © Majumder, Blasch, Garren using a *dropout layer* to AlexNet, which they called AFRLeNet

Recurrent Neural Network

Figure 4.16

• Persistence (Temporal)

- RNNs maintains information persistence via loops, as with Gaussian Mixture Models (GMM).
 - A given neural network A receives an input x_t and outputs a value y_t , according to a hidden (latent relationship) h_t .
 - By passing data through iterative steps in the network, the loop is realized, and hence is recurrent.

Approaches

- Boltzmann Machine NN that receives stochastic inputs
- Long Short-term Memory (LSTM) locally-stored short-term results
- Gated Recurrent Unit (GRU) efficient LSTM/RNN
- Reservoir Computing (e.g., Liquid State Machine) for low power applications
- Spiking Neural Network randomly connected neurons

Recurrent Neural Network (2) (a) RNN Loop, (b) RNN rolled out

RNN Loop

RNN Rolled Out

Figure 4.16

Recurrent Neural Network

LSTM, there are three functions: (1) vector processing, (2) NN layer operations, and (3) pointwise operations Vector operations include concatenation (merging) and copying (forking) of entire vector from one node to the next. NN layers conduct the learning operations such as sigmoid (σ) and tanh weighting. Pointwise operations include vector addition(+) and multiplication (×).

RF Signal Data Collection

• Example

• Radio Frequency Adversarial Learning (RFAL) framework exploits transmitter specific "signatures" like the in-phase (I) and quadrature (Q) imbalance (i.e., the I/Q imbalance) present in all transmitters

Figure 4.18

- Learns feature representations using a deep neural network (DNN) that uses the I/Q data from received signals.
- After elimination of the adversarial transmitters, the trusted transmitters are classified using a convolutional neural network (CNN), a fully connected DNN, and a recurrent neural network (RNN).

Signal Processing and Data Collection

	# Transmitters	Туре	Rows	Columns	SNR	Size
Test 1	4	USRP B210 transmitters	160K	2048	30 dB	6.8 GB
Test 1	8	USRP B210 transmitters	320K	2048	30 dB	13.45 GB
Test 2	1	USRP B210 transmitter	80K	2048	30 dB	3.31 GB
Test 2	1	PLUTO transmitter	80K	2048	30 dB	2.85 GB
Test 3	8	USRP B210 transmitters	320K	2048	20, 10, 0 dB	13 GB

RF Deep Learning Architectures

RF Deep Learning Architectures

Deep Neural Network

Convolutional Neural Network

Recurrent Neural Network

Accura	cy Comparison of NN Approaches	to
classify	/ 4 and 8 transmitters	

#Trans	Model	#Parameters	Acc (%)	Time (min)
4	CNN	38 Million	89.07	~ 25
4	DNN	6.8 Million	96.49	~ 12
4	RNN-LSTM	14.2 Million	97.40	~ 12
4	RNN-GRU	10.7 Million	97.85	~ 12
8	CNN	38 Million	81.59	~ 30
8	DNN	6.8 Million	94.60	~ 15
8	RNN-LSTM	14.2 Million	95.78	~ 16
8	RNN-GRU	10.7 Million	97.06	~ 16

Figure 4.20

Step 2: Update Gate (Data to store) Decide what to insert tanh h_{t-1} X_t $i_{t} = \sigma (W_{i} \bullet [h_{t-1}, x_{t}] + b_{i})$ $\tilde{c}_{t} = \tanh (W_{C} \bullet [h_{t-1}, x_{t}] + b_{C})$ Candidate (features)

The old state f_t is multiplied, thereby forgetting information that is deemed to be unimportant.

$$C_{t} = f_{t}^{*}C_{t-1} + i_{t}^{*}\mathcal{L}_{t}$$

Step 1:
$$f_t = \sigma (W_f \bullet [h_{t-1}, x_t] + b_f)$$

Step 3: Output Gate (Data to Pass)

The filtered output includes a sigmoid layer that decides "what" and a tanh layer (e.g., $\{-1 + 1\}$) to determine "how much".

 $o_{t} = \sigma (W_{o} \bullet [h_{t-1}, x_{t}] + b_{o})$ $h_{t} = o_{t} * tanh(C_{t})$

Gated Recurrent Unit (GRU)

One Sequence:

LSTM cell drawback is the need for additional memory

GRU have one less gate than LSTMs

- Combines the "forget" and "input" gates into a single "update gate."
- Simply exposes the full hidden content without any control.

"reset gate" (
$$i_t$$
),
"update gate" (f_t),
 $f_t = \sigma (W_{xf} x_t + W_{hf} h_{t-1} + b_f)$

"cell state" memory (c_t) C_t = tanh ($W_{xc}x_t + W_{hc}(f_t \circ h_{t-1})$)

"recurrent" (c_t)

$$h_{t} = (1 - i_{t}) \circ C_{t} + (i_{t}) \circ h_{t-1}$$

LSTM SAR Example

Multi-aspect aware Bidirectional Long Short-Term Memory (LSTM) recurrent neural networks (MA-BLSTM).

Boltzmann Machine

Figure 4.22

The difference in the global energy results from a single unit *i* equaling 0 (off) versus 1 (on)

$$\Delta E_i = \sum_{i < j} w_{ij} s_j + \sum_{i > j} w_{ji} s_j + \theta_i$$

- w_{ij} is the connection strength between unit *j* and unit *i*.
- s_i is the state, $s_i \in \{0,1\}$ of unit *i*, and
- θ_i is the bias of unit *i* in the global energy function, and $-\theta$ is the activation threshold for the unit.

Deep Boltzmann Machine

$$p(v) = \frac{1}{Z} \sum_{h} e^{\sum_{ij} W_{ij}^{(1)} v_i h_j^{(1)} + \sum_{jl} W_{jl}^{(2)} h_j^{(1)} h_l^{(2)} + \sum_{lm} W_{lm}^{(3)} h_l^{(2)} h_m^{(3)}}$$

Figure 4.23

ADVANTAGE

Learn complex relations from limited label data by doing processing in both directions

DISADVANTAGE Slow as from the multiple MCMC steps

Chapter 4 Outline

97
98 Ban K. Myonter-ter? Ban - Swelt Same
100 and Communications Automatic Target Recognition
105
105
114
119
123
123
126
126
130
136

Learning Approaches

RL: Value function $V_{\pi}(s)$ describes the expected return starting with state $s_0 = s$, and successively follows policy π .

Transfer Learning

Figure 4.25

Transfer learning:Active Learning (Human to Machine)Domain adaptation (Machine to Machine)

Transfer Learning

Chapter 4 Outline

4.1 Introduction	97
4.1.1 Deep Neural Networks	98 Dear & Muniter - Drift Ment - Swell Gene
4.1.2 Autoencoder	100 and Communications Automatic Target Recognition
4.2 Neural Networks	105
4.2.1 Feed Forward Neural Networks	105
4.2.2 Sequential Neural Networks	114
4.2.3 Stochastic Neural Networks	119
4.3 Reward-Based Learning	123
4.3.1 Reinforcement Learning	123
4.3.2 Active Learning	126
4.3.3 Transfer Learning	126
4.4 Generative Adversarial Networks	130
4.5 Summary	136

- In GANs, (uses an implicit transition operator to determine the decision density)
 - MLP generator creates new data instances,
 - MLP *discriminator* evaluates them for authenticity. That is. the discriminator decides if each instance of data under review belongs to the actual training dataset:

Generative Densities

Figure 4.27

- In GANs, (uses an implicit transition operator to determine the decision density)
 - MLP generator creates new data instances,
 - MLP *discriminator* evaluates them for authenticity. That is. the discriminator decides if each instance of data under review belongs to the actual training dataset:
- Discriminative models learn the boundary between classes, and
- *Generative models* model the distribution of individual classes

Deep generative models, such as graphical models,

- Deep Belief Networks: utilize Bayesian reasoning in a Markov Chain to determine p(c|y) = [p(y | c) p(c)] / p(y); where p(y | c) is the likelihood and p(c) is the prior instances of a class.
- Deep Belief Network (DBN) : As Deep Boltzmann machine (with stochastic variables of the uncertainty and bias on *c* and *y*) is impossible to compute, so a DBN is used for each layer

 $p(y, h^1, h^2, ..., h^n, c) = p(y|h^1)p(h^1|h^2) \dots p(h^{n-2}|h^{n-1})p(h^{n-1}|h^n) p(h^n|c) p(c)$

The DBN gives tractable results; however, other methods discussed provide approximate densities p(y | c) using the maximum likelihood.

$$L(c|y) = \max_{c} \left\{ \prod_{i=1}^{m} p(y_i | c) \right\}$$

Deep Belief Network

DBN is used for each layer: $p(y, h^1, h^2, ..., h^n, c) = p(y|h^1)p(h^1|h^2) ... p(h^{n-2}|h^{n-1})p(h^{n-1}|h^n) p(h^n|c) p(c)$

GAN Types:

- Given some of the **features**, they predict the associated features (GMM, Latent Dirichlet Allocation)
- Given a label, they predict the associated features (Naive Bayes, autoregressive), or
- Given a hidden representation, they predict the associated features (VAE, GAN)

GAN zoo (<u>https://github.com/hindupuravinash/the-gan-zoo</u>) provides a listing of available GANs

Comparisons (adapted from Goodfellow, *et al.*, [46])

	Deep directed	Deep undirected	Generative	Adversarial Models	
	graphical models	graphical models	Autoencoders		
Model Design	Most models	Careful design to	Any differential function	Any differential function	
	difficult	ensure properties	is theoretically permitted	is theoretically permitted	
Training	Inference needed	Inference needed.	Enforced tradeoff	Synchronizing the	
	during training	MCMC approximates	between mixing and	discriminator with the	
		partition function	power of reconstruction	generator	
		gradient	generations		
Inference	Approximate	Variational inference	MCMC-based inference	Approximate inference	
	inference				
Sampling	Available	Requires Markov	Requires Markov Chain	Available	
		Chain			
Evaluation p(z)	Intractable, but can	Intractable, but can	Not explicitly	Not explicitly	
	be approximated	be approximated	represented, may be	represented, may be	
			approximated with	approximated with	
			Parzen density	Parzen density	
			estimation	estimation	

GAN zoo (<u>https://github.com/hindupuravinash/the-gan-zoo</u>) provides a listing of available GANs

Steps:

- **Step 1:** The generator takes in **random numbers** and returns an image.
- **Step 2:** The **generated image (data)** is fed into the discriminator alongside a stream of images taken from the actual, ground-truth dataset.
- Step 3: The discriminator injects both real and fake images and returns probabilities, each being a number between 0 and 1, with
 - representing a prediction of authenticity,
 representing the imposter.

ALGORITHM: GAN INPUT: number of iterations k, MLP with parameters θ_g INITIALIZE:

• Noise samples $m: \mathbf{n} = \{n^{(1)}, \dots, n^{(m)}\}$ from prior $p_g(n)$

• Data samples $m : \mathbf{d} = \{z^{(1)}, \dots, z^{(m)}\}$ from generating distribution $G(n; \theta_g)$ For $i = 1, 2, \dots, k$

• receive instance: $\underline{\mathbf{d}}_t \in \mathbb{R}^n$, $\underline{\mathbf{n}}_t \in \mathbb{R}^n$

update the discriminator by ascending its stochastic gradient

$$\max \nabla_{\theta_{d}} \sum_{i=1}^{m} \log D(z^{(i)}) + \log \{1 - D[G(n^{(i)})]\}$$

- receive instance: $\mathbf{n}_t \in \mathbb{R}^n$
- · update the generator by descending its stochastic gradient

$$\min \nabla_{\theta_g} \sum_{i=1}^m \log \{1 - D[G(n^{(i)})]\}$$

• output value function and data z

GAN zoo (<u>https://github.com/hindupuravinash/the-gan-zoo</u>) provides a listing of available GANs

EO with SAR Image

Figure 4.27

• GAN Example

Vehicle	M1	M60	T72	M110	2\$1	BTR 70	M548	M35
Class	MBT (Tank)	MBT (Tank)	MBT (Tank)	SPG (Howitzer)	SPG (Howitzer)	APC (Carrier)	APC (Carrier)	Truck
EO Image	Ø	A		-	City I	- Anto		
Measured SAR Image	and the second sec	2			and a second	al a		
Synthetic SAR Image	and the second s	y.			7			

 From Arnold, J., L. Moore, and E. Zelnio. "Blending Synthetic and Measured Data Using Transfer Learning for Synthetic Aperture Radar (SAR) Target Classification," *Proc. SPIE, Vol.*10647, 2018.

Takeaway Message

Method	Performance (%)			Reference
	SOC	EOC-1	EOC-2	
Pulse Couple Neural Network (PCNN) [35 tgts]	87.0	75	67	Blasch, 1998
A-ConvNets	99.1	96.1	98.9	Chen <i>, et al.,</i> 2016
AFRLeNet	99.4			Profeta <i>et al.,</i> 2016
CNN-SVM	99.5	95.75		Amrani <i>, et al</i> ., 2017
VGG-S1	98.8	94.15		Amrani <i>, et al.,</i> 2017
VGG-S, Feature Fusion, KNN	99.82	96.16		Amrani <i>, et al.,</i> 2017
Multi-aspect aware bidirectional LSTM RNN	99.90	-	99.59	Zhang <i>, et al</i> . 2017
Joint Supervised Dictionary	97.65	98.39		
GAN-CNN	97.53			Zheng, C et al, 2019
MGAN-CNN	97.81			Zheng, C et al, 2019
Triple GAN and Integrated GAN	99.9			Gao, F. Et al 2019

Chapter 4 Outline

4.1 Introduction	97
4.1.1 Deep Neural Networks	98 Plant Muniter - Dat? Next Same
4.1.2 Autoencoder	100 Automatic Target Recognition
4.2 Neural Networks	105
4.2.1 Feed Forward Neural Networks	105
4.2.2 Sequential Neural Networks	114
4.2.3 Stochastic Neural Networks	119
4.3 Reward-Based Learning	123
4.3.1 Reinforcement Learning	123
4.3.2 Active Learning	126
4.3.3 Transfer Learning	126
4.4 Generative Adversarial Networks	130
4.5 Summary	136