Machine Learning Techniques for Radar Automatic Target Recognition (ATR)

Chapter 5: Radio Frequency Data for ML Research

Uttam K. Majumder

Deep Learning for Radio Frequency Automatic Target Recognition (ATR)

Lecture Outline

- 1. Radio Frequency ATR: Past, Present, and Future: 20 min
- 2. Mathematics for Machine Learning / Deep Learning:
 20 min
- 3. Review of ML Algorithms: 25 min
- 4. Deep Learning Algorithms: 30 min

5. RF Data for ML Research: 15 min

- 6. DL for Single Target Classification: 25 min
- 7. DL for Many Targets Classification: 25 min
- 8. RF Signals Classification: 20 min
- 9. RF ATR Performance Evaluation: 25 min
- **10.**Emerging ML Algorithms for RF ATR: 35 min

1.3 Radio Frequency (RF) Data

- Unlike video imagery, RF data are difficult to collect
- Measured RF data collection involves
 - -Radar sensors (X-band, UHF/VHF) integration and data collection by a certified aircraft
 - -A detailed experiments design (collection scenarios)
 - -Ground truthing

Hence, obtaining measured RF data are expensive

Radio Frequency Data

1,000,000,000,000,000,000,000 Exabyte Petabyte Terabyte Gigabyte Megabyte Kilobyte Byte 10¹⁸ 10¹⁵ 10¹² 10⁹ 10⁶ 10³ 10⁰

1.3 Measured RF Signature

- Synthetic Aperture Radar (SAR) technology is used imaging
 - 1D SAR: range profile
 - 2D SAR: Image of a Scene/Target/Object
 - In general, 1 foot resolution SAR image is common
 - In X-band, ~0.5GHz BW
- •Detecting and identifying object from radar images

could be hard for a human operator

1.3 Synthetic RF Data

- It is possible to generate radar data by simulation
- Electro-magnetic prediction code is used
 - Computationally very expensive and requires High Performance Computing (HPC) systems
- Even with an HPC system, it requires days to generate synthetic RF signature of a vehicle/object
- Compute time depends on:
 - Fidelity/Accuracy of the signature prediction
 - Number of objects/targets in the scene
 - Background (with or w/o clutter and other objects) of the scene

1.3 RF Data Sources for AI/ML Research

- 1. Public Release MSTAR Dataset
 - <u>https://www.sdms.afrl.af.mil/index.php?collection=mstar</u>
- 2. SAMPLE Dataset
 - <u>https://spie.org/Publications/Proceedings/Paper/10.1117/12.2523460?S</u>
 <u>SO=1</u>
- 3. PEMS Dataset
- 4. Civilian Vehicles Dataset
 - <u>https://www.sdms.afrl.af.mil/index.php?collection=cv_dome</u>
- 5. Ship Detection Dataset
 - <u>https://github.com/CAESAR-Radi/SAR-Ship-Dataset</u>
- 6. **RF Signals Dataset**
 - <u>http://www.genesys-lab.org/oracle</u> (RF Fingerprinting)

1.3 MSTAR Data

Moving and Stationary Target Acquisition Recognition (MSTAR)

Table 1. The number of images of each object at different depression angles.

Targets	BMP2	BTR70	T72	BTR60	2S1	BRDM2	D7	T62	ZIL131	ZSU234
17°	233	233	232	256	299	298	299	299	299	299
15°	587	196	582	195	274	274	274	273	274	274

1.3 SAMPLE Dataset

Synthetic And Measured Pair Labelled Experiment (SAMPLE) Data

Center Frequency: 9.6 GHz

٠

٠

٠

Taylor Weighting: -35 dB

Benjamin Lewis; Theresa Scarnati; Elizabeth Sudkamp; John Nehrbass; Stephen Rosencrantz; Edmund Zelnio, "A SAR dataset for ATR development: the Synthetic and Measured Paired Labeled Experiment (SAMPLE)". Proc. SPIE 10987, Algorithms for Synthetic Aperture Radar Imagery XXVI, 109870H (14 May 2019); doi: 10.1117/12.2523460

ZSU23

Total

177

1366

177

1366

354

2732

1.3 PEMS ATR Dataset

Performance Estimation for Multi-Sensor (PEMS) ATR Data

10Targets with 4 variants

- BMP2 No Mount Assembly
- M2NA No Missile Launcher Assembly
- T72 No Barrel
- ZSU234 No Radar
- · Elevation: 11-20 degrees
- Azimuth: 0:2:358 degrees
- · Resolution: 12in x 12in
- Bandwidth: 500 MHz
- Center Frequency: 9.6 GHz
- Polarization: HH
- Articulation States: -90:5:90

C. Paulson, L. Westerkamp, E. Zelnio., "Challenge problems consideration for the 7 habits of highly effective ATRs", (Conference Presentation)", Proc. SPIE 11393, Algorithms for Synthetic Aperture Radar Imagery XXVII, 113930V (27 April 2020); https://doi.org/10.1117/12.2561780

	Table 1: Data Generated for Challenge Problem					
	Class Num	Target	Articulation 1 (deg)	Articulation 2 (deg)	Total Images	
	1	2S1	Gun [0]	Turret [-90:5:90]	66,600	
	2	BMP2	Gun [0]	Turret [-175:5:180]	66,600	
	3	BMP2NM	Gun [0]	Turret [-90:5:90]	66,600	
	4	BTR70	Gun [0]	Turret [-90:5:90]	66,600	
2	5	M1A1	Gun [0]	Turret [-90:5:90]	66,600	
5	6	M2NA	Gun [0]	Turret [0:5:90 270:5:355]	66,600	
	7	M2NANL	Gun [0]	Turret [0:5:90 270:5:355]	66,600	
	8	M35	Rail [0:90:90]	Left Door [0:5:70]	54,000	
	9	M548	Rail [0:90:90]	Left Door [0:5:70]	54,000	
	10	M60	Gun [0]	Turret [-90:5:90]	66,600	
θHz	11	T72	Gun [0]	Turret [-90:5:90]	66,600	
	12	T72NB	Gun [0]	Turret [-90:5:90]	66,600	
	13	ZSU234	Radar [0]	Turret [-90:5:90]	66,600	
	14	ZSU234NR	Gun [11,45,60]	Turret [-90:5:90]	199,800	

1.3 Civilian Vehicle Datasets (CVDome)

Toyota Camry	Honda Civic 4Dr	Jeep 1993	Jeep 1999	Nissan Maxima
			500	201
Mazda MPV	Mitsubishi	Nissan Sentra	Toyota Avalon	Toyota Tacoma

Parameter	Value
Radar center frequency	$9.6\mathrm{GHz}$
Unambiguous range	$\approx 15\mathrm{m}$
Extrapolation extent	$\leq 0.25^{\circ}$
Azimuth extent	360°
Elevation extent	30° to 60°
speed of light	$299792458\mathrm{m/s}$

CVDome Data

• •	📄 Civilian_Vehic	le_SampleSet		
< >		Q Search		
Favorites	Name ^	Date Modified	Size	Kind
AirDrop	🚞 code	Jun 9, 2018 at 2:44 PM		Folder
	CVDomes.pdf	Jun 8, 2018 at 4:30 PM	384 KB	PDF Document
Recents	desktop.ini	Jun 8, 2018 at 4:30 PM		Document
Applications	Domes 📃	Jan 5, 2020 at 8:47 AM		Folder
Desktop	ReadMe.txt	Jun 8, 2018 at 4:30 PM	97 bytes	Plain Text
Documents	Thumbs.db	Jun 8, 2018 at 4:30 PM	23 KB	Document
O Downloads				
Locations				
🛆 iCloud Drive				
Remote Disc				

CVDome Data

	Domes					
< >		🖞 🖸 🔍 Q. Search				
avorites	Name	 Date Modified 	Size	Kind		
AirDrop	🕨 📄 Camry	Jun 9, 2018 at 2:44 PM		Folder		
Recents	🕨 📃 HondaCivic4dr	Jun 9, 2018 at 2:45 PM	570	Folder		
	🕨 🚞 Jeep93	Jun 9, 2018 at 2:46 PM		Folder		
A Applications	🕨 🚞 Jeep99	Jun 9, 2018 at 2:46 PM		Folder		
Desktop	🕨 🛅 Maxima	Jun 9, 2018 at 2:47 PM		Folder		
n B	🕨 🚞 MazdaMPV	Jun 9, 2018 at 2:48 PM		Folder		
Documents	🕨 📄 Mitsubishi	Jun 9, 2018 at 2:48 PM		Folder		
O Downloads	🕨 🚞 Sentra	Jun 9, 2018 at 2:49 PM		Folder		
	🕨 📄 ToyotaAvalon	Jun 9, 2018 at 2:49 PM		Folder		
ocations	🕨 📄 ToyotaTacoma	Jun 9, 2018 at 2:50 PM		Folder		
A iCloud Drive						

Remote Disc

0

CVDome Data

00	🚞 ca	ode	
<>		Q Search	
Favorites	Name	Date Modified	Size Kind
() AirDrop	bpBasicFarField.m	Jun 8, 2018 at 4:30 PM	5 KB MATLAB Code
Recents	formImageCVDomes.m	Jun 8, 2018 at 4:30 PM	4 KB MATLAB Code
A Applications			
🔙 Desktop			
Documents			
O Downloads			
Locations			
🛆 iCloud Drive			
Remote Disc			

SAR Image from CVDome

1.3 RF Ship Detection Dataset

A SAR Dataset of Ship Detection for Deep Learning under Complex Backgrounds." Remote Sensing 11 (7). doi: 10.3390/rs11070765

https://github.com/CAESAR-Radi/SAR-Ship-Dataset

Summary of RF Data

- We Presented Available RF Data for ML research
- Discussed how these data can be obtained
- Discussed Why RF data are expensive