Machine Learning Techniques for Radar Automatic Target Recognition (ATR)

Uttam K. Majumder

Chapter 9: RF ATR Performance Evaluation

Lecture Outline

1. Radio Frequency ATR: Past, Present, and Future:

30 min

- 2. Mathematics for Machine Learning / Deep Learning: 20 min
- 3. Review of ML Algorithms: 30 min
- 4. Deep Learning Algorithms: 30 min
- 5. RF Data for ML Research: 15 min
- 6. DL for Single Target Classification: 20 min
- 7. DL for Many Targets Classification: 20 min
- 8. RF Signals Classification: 20 min
- 9. RF ATR Performance Evaluation: 25 min
- 10. Emerging ML Algorithms for RF ATR: 30 min

Machine Learning Techniques for Radar Automatic Target Recognition (ATR)

Chapter 9 Outline

Dian K. Maumiler - Drik P. Blassit - David R. Garren

231
231
235
237
238
239
239
246
246
250
252
253
253
256
256

Data Information Fusion Group Model

E. Blasch, "Situation, Impact, and User Refinement," Proc. of SPIE, Vol. 5096,2003

Figure 9.1

E. Blasch, A. J. Aved, "Physics-Based and Human-Derived Information Fusion Video Activity Analysis," Int'l. Conf. on Information Fusion, 2018.

Data Fusion Methods(1)

Automatic Target Recognition : Uses Data Fusion

Fusion Type	Description	Benefit	Limitation
Boolean Logic	Mathematical (Crisp) Rules	Well Defined	High uncertainty
	of AND /OR / NOT/NOR	• Simple to implement	Requires many rules
		• Expandable for large systems	• Reduces meaning and interpretation
Fuzzy Logic	Provides overlapping (soft)	Handles imprecise information	• Not accurate
	many-valued sets to	• Defines bounds for classification	• Decision rules are arbitrary
	process partial truth	• Amendable to human analysis	• Does not scale to complex situations
	decision rules		
Markov	Probabilistic modeling of	• Incorporate uncertainty of both the	Combinatoric explosion of states can
Chains	dynamic systemscomprised	states and the model.	reduce utility
	of defined finite states and	 Computational complexity is 	• Requires aggregation of states and
	transitions between states.	minimal.	pruning of superfluous stales
		• Offers scalability in complex	• Calls for knowledge engineering to
		scenarios	determine the meaning
Bayesian	Probabilistic reasoning	 Models a priori conditional 	• Structure is static and cannot be
Networks	network for partial	situations	changed adaptively.
	information providing a	• Propagates information through the	• Approximates the Interconnection
	system of beliefs in given	network methodically	functions (e.g. Gaussian sums)
	states that impact all other	• Incorporates partial knowledge for	• Numerical approximations can have
	states in the network	uncertainty analysis	low bounds on the induced error

Data Fusion Methods (2)

Automatic Target Recognition : Uses Data Fusion

Fusion Type	Description	Benefit	Limitation
Bayesian	Probabilistic reasoning	Models a priori conditional	• Structure is static and cannot be
Networks	network for partial	situations	changed adaptively.
	information providing a	• Propagates information through the	• Approximates the Interconnection
	system of beliefs in given	network methodically	functions (e.g. Gaussian sums)
	states that impact all other	• Incorporates partial knowledge for	• Numerical approximations can have
	states in the network	uncertainty analysis	low bounds on the induced error
Entropy	Measures data information	• Monitors and predictsmeasurement	• Entropy is unitless and can easily
	contained in a signal.	uncertainty	misinterpreted
		Handles discrete and continuous	• Provides a relative assessment versus
		disparate sourcesuseful for data	and absolute analysis
		fusion	• Uncertainty level is not conducive to
		Widely adopted	high credibility
Dempster	Bayesian evidence accrual	• Incorporatespositive, negative, and	Complexity of mathematical
Shafer	system that determines	conflicting information	implementation does not scale
	possibility (belief and	• Does not need a fully specified	Requires approximation techniques
	plausibility) based on	model for processing	with many fusion rules
	observations	Captures multi-decision reasoning	Challenged with partial information

* Recent(2019): Deep Learning Evidential NN (replaces softmax with evidential reasoning)

AI/ATR Hierarchy

AI Hierarchy

Automatic Target Recognition Standards (ICD 203)

- 1. Sourcing
- 2. Uncertainty Analysis
- 3. Distinguish Judgments
- 4. Analysis of Alternatives
- 5. Customer relevance
- 6. Logical Arguments
- 7. Consistency (explanations)
- 8. Accuracy
- 9. Visualization

E. Blasch, J. Sung, T. Nguyen, "Multisource AI Scorecard Table for System Evaluation," *AAAI FSS-20: Artificial Intelligence in Government and Public Sector*, Washington, DC, USA, 2020. <u>arXiv:2102.03985</u>

DISPLAY	Fi	gure 9.2
METRICS	Ai Deep learning	
LEARN OPTIMIZE	Testing, Machine learning algorithms, experimentation	
LABEL AGGREGAT	E Analytics, metrics, segments, aggregates, features, training data	
	M Cleaning, patterns, anomaly detection, preparation	J
LAFLORL		
	Reliable data flow, infrastructure,	
	models open architecture Structured	
SIORE	and Unstructured data storage	
	nstrumentation, Logging, External Data, use	~
	generated content, Sensors, Context	

Multi Domain Sensing

Evaluation for: Users, Missions, Sensor Control

Evaluation from: Operating conditions: Sensor, Environment, Target (SET)

B. Kahler, E. Blasch, and L. Goodwon, "Operating Condition modeling for ATR Fusion Assessment," *Proc. of SPIE*, 6571, 2007. © Majumder, Blasch, Garren

Figure 9.3

Real world variability: Extended Operating Conditions (EOC's)

Complexity – Operating Conditions (Constants, factors, MC)

S

 \boldsymbol{E}

Experimental Design

FACTOR CHANGE

Complexity – Operating Conditions (Constants, factors, MC)

BASELINE (Constant)

Target

Type of Target Target density

Environment

Types of forest, Density Type of Terrain (slope) Season Weather Cultural vs. Natural

<u>Sensor</u>

Acquisition Geometry Interference Image Quality # Images for baseline Time

<u>Target</u> **Change in Dynamics** Change in Articulation Environment Foliage Type Flat, Mountainous Change in Season **Change in Weather** Social / Polit. Context Sensor **Pointing accuracy** Bias Resolution # of Looks **Time Delay**

Monte Carlo Variance

<u>Target</u>

Dynamic Model Var. Articulation accuracy

Environment

Foliage variance DTED variance Value of cloud Moisture content Planned AOI Sensor **GPS** accuracy Noise **Pixel variance # Look Variance Time Delay Variance**

Experimental Design

Complexity – Operating Conditions (Constants, factors, MC)

OC Category	Parameter	Flat Terrain	Urban Terrain
Targets	Targets	2, 10, 100	1, 2, 5
	Moving/Confusers	(1/0),(5/2), (100/1000)	(1/0), (2/10), (5/1000)
	Routes-Stop-Move	Variable	Variable
Sensors	Initial Start Points	Variable	Variable
	Bias	On/Off	On/Off
Environment	'No Fly' Zones	Variable Area Locations	Variable Area Locations

Design of Exp	Exp 1 (easy)	Exp 2 (not so easy)	Exp 3 (Difficult)	Exp N (Most Difficult)
Targets	5 known	5 /1 unknown	10 /4 unknown	K known/U unknown
Confusers	2 confusers	2 confusers	10 confusers	C confusers
		1 unknown	5 unknown	U unknowns, D decoys
PD/PID	95%/92%	90%/80%	70%/50%	100%/100%
Learning Rate	None	Limited data	Variable	Variable
Run Time	Unlimited	1 minute	30 seconds	milliseconds
Compute Energy	Unlimited	50 watts/2 lbs	10 Watts / 1 lb	mWatt/grams

AI (ATR) Pipeline

- Evaluation Analysis based on the Mission Awareness support
 - **Agility** e.g., Open Architectures, signal processing (Systems Software)
 - **Autonomy –** e.g., Context Awareness, health monitoring (Algorithms)
 - **Multi-domain** e.g., Coordinated Sensing (Modeling, Instrumentation)

E. Blasch, J. Sung, T. Nguyen, C. P. Daniel, A. P. Mason, "Artificial Intelligence Strategies for National Security and Safety Standards," AAAI Fall Symposium Series, Nov. 2019. <u>https://arxiv.org/ftp/arxiv/papers/1911/1911.05727.pdf</u>

Product Assessment and Deployment

Concerns with DL ATR deployment

- Data Collection collect
 - What data, how much, where from
- Models build
 - What type, level of fidelity
- V&V measure
 - How, When, conditions
- 0&M
 - Who, cost, sustainment

Decision

• Intended use and support (Governance (CC), Design (Eng), Development (Soft), user)

Continual Life Cycle Design

Figure 9.5

Testing and Evaluation

Test and Evaluation Methods

Design Test and Evaluation

Uncertainty Representation and Reasoning Evaluation Framework (URREF) (ontology) Metrics

URREF

- Common definitions
- Uncertainty focus

Evaluation Concerns

- Data
- Reasoning
- Handling
- Reporting
- Repeatability
- Interpretability
- Explainability

Welcome to the ETURWG Home | ETURWG (gmu.edu)

Figure 9.8

Measures of Performance and Measures of Effectiveness

Measures of Performance : Machine Measures of Effectiveness: User

	Measures of Perfo	ormance	Measures of Effectiveness			
	Credibility/Confidence	Accuracy	Timeliness	Throughput	Cost	
Detection	Probability of False Alarm	Probability of	Trainability	Robustness	Database size	
	(PFA)	Detection (PD)				
	False Alarm Rate (FAR)					
Classification	PCC Conditioned on	Probability of	Time to	Complexity	Energy	
(Recognition)	detection	Correct	acquisition			
	PCC Conditioned on target	Classification				
	database	(PCC)				
Identification	Probability of correct	Probability of	Track	Security	Assurance	
	association	identification	lifetime			
	Fingerprinting	(PID)				
Tracking	Track Length	Track Purity	Revisit Rate	Bandwidth	Number of	
	Gap time				sensors	

Measure of Performance (Example)

A useful example from the MSTAR data.

Figure 9.9

- Assume there are ten targets. If there are 8 detections(○), then P_D = 8/10, while for the 1 false alarm (□), P_{FA} = 1/10 and one [Missed Detections (◊)], P_{FA} = 1/10.
- Using the extraction location of only the 5 targets and the ability to classify the target, then the conditional analysis of P(classification | detection) = 4/5.
- Once the detections are determined, then the target type classification are obtained via a confusion matrix.

Chapter 9 Outline

9.1 Introduction	231
9.2 Information Fusion	231 True t. Manine - 16 7 Name - Swell Game
9.3 Test and Evaluation	235 Deep Learning for Radar and Communications Automatic Target
9.3.1 Experiment Design	237 Recognition
9.3.2 System Development	238
9.3.3 Systems Analysis	239
9.4 ATR Performance Evaluation	239
Confusion Matrix : Object Assessment , Threat Assessment	J
9.5 Receiver Operating Characteristic Curve	246
9.5.1 Receiver Operating Characteristic Curve 9.5.1 Receiver Operating Characteristic Curve from Confusion Matrix	246 246
9.5 Receiver Operating Characteristic Curve 9.5.1 Receiver Operating Characteristic Curve from Confusion Matrix 9.5.2 Precision-Recall from Confusion Matrix	246 250
 9.5.1 Receiver Operating Characteristic Curve 9.5.1 Receiver Operating Characteristic Curve from Confusion Matrix 9.5.2 Precision-Recall from Confusion Matrix 9.5.3 Confusion Matrix Fusion 	246 250 252
 9.5.1 Receiver Operating Characteristic Curve 9.5.1 Receiver Operating Characteristic Curve from Confusion Matrix 9.5.2 Precision-Recall from Confusion Matrix 9.5.3 Confusion Matrix Fusion 9.6 Metric Presentation 	246 250 252 253
 9.5 Receiver Operating Characteristic Curve 9.5.1 Receiver Operating Characteristic Curve from Confusion Matrix 9.5.2 Precision-Recall from Confusion Matrix 9.5.3 Confusion Matrix Fusion 9.6 Metric Presentation 9.6.1 National Imagery Interpretability Rating Scale 	246 250 252 253
 9.5 Receiver Operating Characteristic Curve 9.5.1 Receiver Operating Characteristic Curve from Confusion Matrix 9.5.2 Precision-Recall from Confusion Matrix 9.5.3 Confusion Matrix Fusion 9.6 Metric Presentation 9.6.1 National Imagery Interpretability Rating Scale 9.6.2 Display of Results 	 246 250 252 253 256

Confusion Matrix

	Decisions									
				Detect	ion			Detection		
				Acce	pt			Reject		
Test Obje	cts (truth)			Target			Non	-Target		
			Class Ac	ccept		Class				
						Reject				
		Type 1	Type 2	Type 3	OTHER					
	Type 1	M _{1.1}	M _{1.2}	M _{1.3}	M _{1.0}	M _{1. R-CL}	M _{1. NT}	M _{1.R-Det}		
Target	Type 2	M _{2.1}	M _{2.2}	M _{2.3}	M _{2.0}	M _{2. R-CL}	M _{2. NT}	M _{2.R-Det}		
Type 3 M _{3.1} M _{3.2} M _{3.3} M ₃						M _{3. R-CL}	M _{3. NT}	M _{3.R-Det}		
	Other	M _{0,1} M _{0,2} M _{0,3} M _{0,0} M _{0,R-CL} M _{0,NT}								
Non-Target	Type 4	M _{4.1}	M _{4.2}	M _{4.3}	M _{4.0}	M _{4. R-CL}	M _{4. NT}	M _{4.R-Det}		
	Type 5	M _{5.1}	M _{5.2}	M _{5.3}	M _{5.0}	M _{5. R-CL}	M _{5. NT}	M _{5.R-Det}		

probability likelihood of classification (P_{CL}) :

Numerator	
Denominator	

$$P(c_i|t_j) = \frac{\sum_{i=\{1,2,3,\dots,O\}} M_{ii}}{\sum_{i=\{1,2,3,\dots,O\}} \left(\sum_{j=\{1,2,3,\dots,O\}} M_{ij}\right)}$$

Figure 9.10

Confusion Matrix Analysis

Figure 9.11

User and Machine Tell Different Stories

Confusion Matrix Example

Figure 9.12

			Target					(Test)
				Class A	Class	Unknown		
							Reject	
(Truth)			Type 1	Type 1 Type 2 Type 3 OTHER				
	Type 1	Friend	0.80	0.03	0.02	0.13		
Target	Type 2	Friend	0.01	0.85	0.01	0.09		
	Type 3	Neutral	0.01	0.01	0.03	0.12		
	Other	Neutral	0.03 0.01 0.01 0.90 0.03					0.02
Non-Target	Type 4	Foe	0.01 0.02 0.04 0.21 0.30					0.42
	Type 5	Foe	0.20	0.20	0.20	0.02	0.14	0.24

P(Declaration) = A / (A + B) = 0.08 / [0.8 + (0.03 + 0.01 + 0.01 + 0.02)] = 0.92

P (False Alarm) = E / (E + D) = 0.26 / [0.26+4.65] = 0.053

E = 0.01 + 0.01 + 0.03 + 0.01 + 0.20 = 0.26

U is the entire right column of 0.13+0.09+0.12+0.02+0.42+0.24=1.02. Finally, *D* is the remaining value D = 6 - (0.07) - (0.26) - (1.02) = 4.65.

Confusion Matrix Example

Calculating Metrics

$$P_{\text{Declaration}} = \frac{A}{A+B}$$

$$P_{\text{FalseAlarm}} = \frac{E}{E+D}$$

$$P_{\text{Correct Classification}} = \frac{m \cdot P_{\text{D}}}{(m \cdot P_{\text{D}}) + P_{\text{FA}}}$$

	T1	T2		ΤN	TO	TR	Unk
T1	А	В		В	В	В	U
CM = T2	Е	D		D	D	D	U
		8		- 8	- 8	- 8	
TN	Е	D	D	D	D	D	U

	T1	T2		TN	TO	TR	Unk
T1	D	Е		D	D	D	U
CM = T2	В	Α		В	В	В	U
	1	1		- 8			
TN	D	Е	D	D	D	D	U

Target 1: **0.80**.

B = 0.03 + 0.01 + 0.01 + 0.02 = 0.07.

E = 0.01 + 0.01 + 0.01 + 0.03 + 0.01 + 0.20 = 0.26.

U is the entire right column of 013+0.09+0.12+0.02+0.42+0.24=**1.02**. *D* is the remaining value *D* = **4.65**.

Target 1: $P_{\text{Dec}} = 0.8 / [0.8 + 0.07] = 0.92$. $P_{\text{FA}} = 0.26 / [0.26 + 4.65] = 0.053$.

Let m = 1, then $P_{CC} = 0.92/[0.92 + 0.05] = 0.95$.

Target 2: $P_{DEC} = 0.93$, $P_{FA} = 0.055$, and $P_{CC} = 0.94$.

Confusion Matrix Example

Calculating Metrics: column analysis can utilize the a priori probabilities $P_{ID}(c_j|t_i) = \frac{P(type_i|classification_j) P(type_i)}{\sum_{i=l_1,2,3,\dots,n} P(type_i|classification_j) P(type_i)}$

For example, let P_F be the prior probability of Friendly targets (1, 2), P_N be the prior probability of Neutral targets (3, 4) and P_{μ} is the prior probability of Hostile (Foe) targets (5, 6).

For a **non-threat environment** $P_F = 4P_H$, (0.4, 0.4, 0.0, 0.0, 0.1 and 0.1), so that:

$$P_{ID}(c_i|t_j) = \frac{(0.8)(0.4)}{(0.8+0.01)(0.4) + (0.01+0.03)(0.0) + (0.01+0.20)(0.1)} = \frac{0.32}{0.09+0.0602} = 93\%$$

With a threat environment of P_{H} = 4 P_{F} , the priors for each true target types are (0.1, 0.1, 0.00, 0.00, 0.40 and 0.40). Then, for target type 1: $P_{ID}(c_i|t_j) = \frac{(0.8)(0.1)}{(0.8+0.01)(0.1)+(0.01+0.03)(0.0)+(0.01+0.20)(0.4)} = \frac{0.08}{0.081+0.084}$ 48%

Hence, operators acting on an ATR decision system should realize that, without using a prior knowledge, the results can be significantly inaccurate (e.g., 48% versus 93%). Hence, the ATR analysis from the machine presents both 93% for classification and 93% for known status-quo engagement. However, with the unknown, the user **should be aware that the ATR results are 75% credible**, and then

Confusion Matrix Analysis

Type 1 classification ROW (for the ATR) is 0.8/(0.8+0.03+0.01+0.01+0.02) = 92%; with an uncertainty of 15%. Type 1 classification: COLUMN (for the user) is 0.8/(0.8+0.01+0.01+0.03+0.01+0.02) = 75%.

ATR provides overconfidence with an average of 92%;

while the user results are conservative around 75%

Chapter 9 Outline

9.1 Introduction	231
9.2 Information Fusion	231 True & Mannie - 1097 March - Swell Rever
9.3 Test and Evaluation	235 Deep Learning for Radar and Communications Automatic Parcet
9.3.1 Experiment Design	237
9.3.2 System Development	238
9.3.3 Systems Analysis	239
9.4 ATR Performance Evaluation	239
Confusion Matrix : Object Assessment , Threat Assessment	
9.5 Receiver Operating Characteristic Curve	246
9.5.1 Receiver Operating Characteristic Curve from Confusion Matrix	246
9.5.2 Precision-Recall from Confusion Matrix	250
9.5.3 Confusion Matrix Fusion	252
9.6 Metric Presentation	253
9.6.1 National Imagery Interpretability Rating Scale	253
9.6.2 Display of Results	256
	230

Receiver Characteristic Operating Curve

Signal Detection Theory:

The **clutter** pdf $p(x|C_1)$ is the conditional pdf representing the distribution of clutter objects (class 1), while the **target** pdf $p(x|C_2)$ is the conditional pdf representing the distribution of target objects (class 2).

Figure 9.14

Receiver Characteristic Operating Curve

Metrics	0.5 0.45 0.4 — Target pdf			Figure 9.14
	$f(x) = p(x C_1)$	$x_{B} \xrightarrow{\text{Target}} \downarrow $	Classified a	is (reported)
	0.1	▲ `	Clutter (C)	Target (T)
			Normal (N)	Abnormal (A)
			Null Hypothesis H _o	Alt Hypothesis H ₁
		Clutter (c)	True Negative (P _{TN})	False Positive (P _{FP})
		Normal (n)	Correct Rejection (P _{CR})	False Alarm (P _{FA})
		Null Hypothesis H _o	Specificity	1 - Specificity
		, in the second s	Confidence (1- α)	Level of Significance (α)
			P(C c)	P(T c)
	A atual (Truth)		P(N n)	P(A n)
	Actuar (Truth)	Target (t)	False Negative (P _{FN})	True Positive (P _{TP})
		Abnormal (a)	Missed Detection (P_M)	Detection (P _D)
		Alt Hypothesis H ₁	1 - Sensitivity	Sensitivity
			1 - power (β)	Power (1 - β)
			P(C t)	P(T t)
			P(NIa)	P(Ala)

Receiver Characteristic Operating Curve (Example)

Metrics

			Target					
				Class A	ccept		Class	Unknown
							Reject	
(Truth)			Type 1	Type 2	Type 3	OTHER		
	Type 1	Friend	0.80	0.03	0.01	0.01	0.02	0.13
Target	Type 2	Friend	0.01	0.85	0.01	0.03	0.01	0.09
	Type 3	Neutral	0.01	0.01	0.82	0.01	0.03	0.12
	Other	Neutral	0.03	0.01	0.01	0.90	0.03	0.02
Non-Target	Type 4	Foe	0.01	0.02	0.04	0.21	0.30	0.42
	Type 5	Foe	0.20	0.20	0.20	0.02	0.14	0.24

Using the CM then the detection comes from the correct results,

while the false alarms are the errors from the columns (T):

U

U is the entire right column of 0.13+0.09+0.12+0.02+0.42+0.24=**1.02**.

Denominator = Total - U = 6 - 1.02 = 4.98

False Alarm = P(T|c) = 0.26 + 0.27 + 0.27 + 0.73 / (4.98) = 0.13Detection = P(T|t) = 0.8 + 0.85 + 0.82 + 0.90 + (0.44) / (4.98) = 0.77

ROC Generation

Generation of ROC Curve (right) using two 1-D normal distributions (left). Clutter: N(2,0); Target: N(4,1.5)

NOTE: If a classifier is listed with a detection of P_D = 80%, what does this mean? (P_D of 80% is at P_{FA} of 10%)

OPERATOR: wants a 5% P_{FA} , then the P_{D} is actually somewhere near 65%.

Thus, the ATR designer would want the operator to believe it is PD = 80%, but it is actually at 65%

3D ROC

After setting performance measures for Pd, Pfa, the additional parameters *z* are added:

$$g = g(z) = \left\{ \left(\hat{P}_{FA}(z), \hat{P}_{D}(z), \hat{P}_{3}(z) \right) \mid z \in Z \right\}$$

Additional parameters *z* examples (time, space, operating condition)

With the sum of probabilities: define outputs o_1 and o_2 for each exemplar ($o_1 + o_2 = 1$), and define thresholds:

$$class = \begin{cases} class 2 \text{ if } o_2 > t_u \\ class 1 \text{ if } o_2 < t_l \\ reject \text{ if } t_l \le o_2 \le t_u \end{cases} \qquad t_l = t_c - \frac{1}{2}z \qquad t_u = t_c + \frac{1}{2}z$$

To generate the 3-D ROC trajectory, set $t_c = 0.5$ and vary from 0 (no rejections) to 1 (all exemplars rejected). **Probability of Rejection** (P_r) **the probability that the image is rejected as unknown or is too difficult to classify**

- E. P. Blasch, S. Alsing, and R. Bauer, "Comparison of bootstrap and prior probability synthetic data balancing method for SAR target recognition," *Proc. SPIE, Vol, 3721,* April 1999.
- S. Alsing, E. P. Blasch, R. Bauer, "Three-Dimensional Receiver Operating Characteristic (ROC) trajectory concepts for the Evaluation of Target Recognition algorithms faced with the Unknown target detection problem," *Proc. SPIE* 3718, 1999

3D ROC

E. P. Blasch, S. Alsing, and R. Bauer, "Comparison of bootstrap and prior probability synthetic data balancing method for SAR target recognition," *Proc. SPIE, Vol, 3721,* April 1999.

S. Alsing, E. P. Blasch, and R. Bauer, "Three-Dimensional Receiver Operating Characteristic (ROC) trajectory concepts for the Evaluation of Target Recognition algorithms faced with the Unknown target detection problem," *Proc. SPIE*, Vol. 3718, 1999

Precision-Recall Matrix

OTHER ROC metrics: **Area under the curve (AUC)**

The **F-measure** is determined from a precision-recall (curve) using the confusion matrix and the number of tests

- True positive (TP), true negative (TN), false positive (FP), and false negative (FN).
- The metrics for precision and recall are determined from the CM as a comprehensive F-metric.

		Classified as	s (reported)
		Clutter (C)	Target (T)
		Normal (N)	Abnormal (A)
		Null Hypothesis H _o	Alt Hypothesis H ₁
	Clutter (c)	True Negative (P _{TN})	False Positive (P _{FP})
	Normal (n)	Correct Rejection (P _{CR})	False Alarm (P _{FA})
Actual (Truth)	Null Hypothesis H ₀	P(C c)	P(T c)
Actual (Truth)	Target (t)	False Negative (P _{FN})	True Positive (P _{TP})
	Abnormal (a)	Missed Detection (P _M)	Detection (P _D)
	Alt Hypothesis H ₁	P(C t)	P(T t)

Ζ.

Precision-Recall Matrix (Example)

Figure 9.17

ROC, which include the area under the curve (AUC) and the F-metric. The F-measure is determined from a precision-recall (curve) using the confusion matrix and the number of tests

				Target						
				Class /	Accept		Class Reject	Unknown		
(Truth)			Type 1	Type 2	Type 3	OTHER				
	Type 1	Friend	0.80 = TP	0.03 = FP	0.01 = FP	0.01 = FP	0.02 = TN	0.13 = FN/TN		
Target	Type 2	Friend	0.01 = FP	0.85 = TP	0.01 = FP	0.03 = FP	0.01 = TN	0.09 = FN/TN		
	Type 3	Neutral	0.01 = FP	0.01 = FP	0.82 = TP	0.01= FP	0.03 = TN	0.12 = FN/TN		
	Other	Neutral	0.03 = FP	0.01 = FP	0.01 = FP	0.90 = TP	0.03 = TN	0.02 = FN/TN		
Non-Target	Type 4	Foe	0.01 = FP	0.02 = FP	0.04 = FP	0.21 = FP	0.30 = TN	0.42 = FN/TN		
	Type 5	Foe	0.20 = FP	0.20 = FP	0.20 = FP	0.02 = FP	0.14 = TN	0.24 = FN/TN		

Precision-Recall Matrix (Example)

ATR Metrics

				Target						
				Class	Accept		Class Reject	Unknown		
(Truth)			Type 1	Type 2	Type 3	OTHER				
	Type 1	Friend	0.80 = TP	0.03 = FP	0.01 = FP	0.01 = FP	0.02 = TN	0.13 = FN/TN		
Target	Type 2	Friend	0.01 = FP	0.85 = TP	0.01 = FP	0.03 = FP	0.01 = TN	0.09 = FN/TN		
	Type 3	Neutral	0.01 = FP	0.01 = FP	0.82 = TP	0.01= FP	0.03 = TN	0.12 = FN/TN		
	Other	Neutral	0.03 = FP	0.01 = FP	0.01 = FP	0.90 = TP	0.03 = TN	0.02 = FN/TN		
Non-Target	Type 4	Foe	0.01 = FP	0.02 = FP	0.04 = FP	0.21 = FP	0.30 = TN	0.42 = FN/TN		
	Type 5	Foe	0.20 = FP	0.20 = FP	0.20 = FP	0.02 = FP	0.14 = TN	0.24 = FN/TN		

	Yes	No
Truth(Yes)	TP = 337	FN = 51
Truth(No)	FP = 108	TN = 104

the F-measure or balanced F-score (F_1 score), which is the harmonic mean of precision and recall, where an F_1 score reaches its best value at 1 (perfect precision and recall) and worst at 0.

•Precision is a measure of how many selected items are relevant,

•Recall is how many relevant items are selected.

The general formula for positive real β modifies the weights of precision and recall:

$$F_{\beta} = (1 + \beta^2) \frac{\text{Precision * Recall}}{(\beta^2 * \text{Precision}) + \text{Recall}}$$

© Majumder, Blasch, Garren

- $F_{0.5}$ weighs recall lower than precision (by attenuating the influence of false negatives) and
- F_2 weighs recall higher than precision (by placing more emphasis on false negatives).
- Hence, $F_{0.5}$ = **0.78**, F_1 = 0.81, and F_2 = 0.85.

 $Precision(P) = \frac{TP}{TP + FP} = \frac{337}{337 + 108} = 76\%$

$$Recall(R) = \frac{\text{TP}}{\text{TP} + \text{FN}} = \frac{337}{337 + 51} = 87\%$$

$$Error(E) = \frac{FP + FN}{n} = \frac{108 + 51}{600} = 27\%$$

$$\left(Accuracy(A) = \frac{\text{TP} + \text{TN}}{\text{n}} = \frac{337 + 104}{600} = 74\%\right)$$

Figure 9.17

Confusion Matrix Fusion

• Enhance metrics: (data fusion)

- Multiple looks at the target (getting closer)
- Multiple looks around the target (circle)
- Multiple looks of the target (dynamic tracking)
- Need to fuse the confusion matrices for each iterative look (Bayesian update)

CM CM PCNN AR GETTAR GETTAR GETTAR GETTAR GETTAR GET TAR GETTAR GETTAR GETTAR GETTAR GETTAR GETTAR TARGET 10.79 0.11 0.03 0.01 0.01 0.02 0.01 0.01 TAR GET 20.12 0.02 0.85 n TARGET 30.04 0.03 0.9 0 0.01 0 0.01 TARGET 40.01 n 0.01 0.03 0.05 0.04 0.82 0.12 TAR GET 50.01 n 0.05 0 TAR GET 60.03 0.03 ٥ 0.11 0.81 0.05 0.04 TAR GET 70.01 0.89 0 0.97 0.01 TAR GET 80.01 n 0.94 0.02 TAR GET 9 n 0 0.01 TAR GET 100.01 0.02 0.02 0.87 0.04 0.02 0.08 0.85 0.03 TAR GET 110.01 n 0.01 0.01 0.01 0.03 NOT-IN-LIB 0 n 0.04 0

*see Chapter 4

Improve precision, recall, etc.

Confusion Matrix Fusion

- Fusion of Two Matrices
- The priors and likelihoods are denoted as column vectors

 $p(\bar{o}) = \begin{bmatrix} p(o_1) \\ p(o_2) \\ \vdots \\ p(o_N) \end{bmatrix}; \quad p(z_j | \bar{o}) = \begin{bmatrix} p(z_j | o_1) \\ p(z_j | o_2) \\ \vdots \\ p(z_j | o_N) \end{bmatrix}$ $p(z_j|o_1)$

Decisions

 Joint likelihoods are similar column vectors, assuming independence for two confusion matrices A and B

$$p(z_{j}^{A}, z_{k}^{B} | \overline{o}) = \begin{bmatrix} p(z_{j}^{A} | o_{1}) \cdot p(z_{k}^{B} | o_{1}) \\ p(z_{j}^{A} | o_{2}) \cdot p(z_{k}^{B} | o_{2}) \\ \dots \\ p(z_{j}^{A} | o_{N}) \cdot p(z_{k}^{B} | o_{N}) \end{bmatrix}$$

 Calculate a posteriori from with decision from max likelihood estimate $n(r^{A} r^{B} | \bar{z}) n(\bar{z})$

$$d_{i} = \arg \max_{j,k} p(o_{i}|z_{j}^{A}, z_{k}^{B}) \qquad p(\bar{o}|z_{j}^{A}, z_{k}^{B}) = \frac{p(z_{j}, z_{k}|o_{j})p(o_{j})}{\sum_{i=1}^{n} p(z_{j}^{A}, z_{k}^{B}|\bar{o}_{i})p(\bar{o}_{i})}$$

Algorithm 1: Confusion Matrix Fusion function [d, pObarZaZb]=fuseCMdecisions(za, zb, Obar) CA = getConfusionMatrix(1);CB = getConfusionMatrix(2);pZaObar = CA(:,za);pZbObar = CB(:,zb);pZaZbObar = pZaObar .* pZbObar; posteriorNum = pZaZbObar .* pObar; posteriorDen = sum(posteriorNum); pObarZaZb = posteriorNum / posteriorDen; [junk, d] = max(pObarZaZb);Return

*code available

B. Kahler and E. Blasch, "Decision-Level Fusion Performance Improvement from Enhanced HRR Radar Clutter Suppression," J. of. Advances in Information Fusion, Vol. 6, No. 2, pp. 101-118, Dec. 2011.

Chapter 9 Outline

9.1 Introduction	231
9.2 Information Fusion	231 mark Repeter for Parel - See Large
9.3 Test and Evaluation	235 Deep Learning for Radar and Communications Automatic Target
9.3.1 Experiment Design	237 Recognition
9.3.2 System Development 9.3.3 Systems Analysis	238
9.4 ATR Performance Evaluation	239
Confusion Matrix : Object Assessment , Threat Assessment	
9.5 Receiver Operating Characteristic Curve	246
9.5.1 Receiver Operating Characteristic Curve from Confusion Matrix	246
9.5.2 Precision-Recall from Confusion Matrix	250
9.5.3 Confusion Matrix Fusion	252
9.6 Metric Presentation	253
9.6.1 National Imagery Interpretability Rating Scale	253
9.6.2 Display of Results	256
9.7 Conclusions	256

Evaluation With Users

Figure 9.18

• Need to assess analytical with results

National Interpretability Imagery Rating Scale (NIIRS)

National imagery interpretability rating scale (NIIRS) to assess the **quality of SAR data**. Given a SAR image with a NIIRS rating, then the discernability of certain features is possible. For example, in many of the MSTAR images, the ground sampling distance (GSD) resolution is 1 ft (0.3 m), which corresponds to a NIIRS of 7.

NIIRS	1	2	3	4	5	6	7	8	9
Resolution	> 9m	4.5-9.0m	2.5-4.5m	1.2-2.5m	0.75-1.2m	0.4-0.75m	0.2-0.4m	0.1-0.2 m	<0.1m
Detect	Road	Defense	Buildings	Convoy	Semi-	Wheeled vs.	Medium	Turrets	Guns
	networks	area			Truck	tracked	tank versus		
						tanks	car		

The SAR NIIRS and resolution (GSD)[47] is then determined by sensor analogy to a general image quality equation

 $(GIQE-4): \text{NIIRS}_{IR} = 10.751 - A * \log_{10} (GSD) + B * \log_{10} (RER) - 0.656 H - [0.344(G/SNR)]$

where *GSD* is the geometric mean of the ground sample distance, *H* is the geometric mean height due to edge overshoot, *RER* is the geometric mean of the normalized relative edge response, *G* is the noise gain, *SNR* is the signal to noise ratio, *A* is constant (3.32 if *RER* = 0.9, 3.16 if *RER*<0.9), and *B* is constant (1.559 if *RER* = 0.9, 2.817 if *RER*< 0.9). Typically, the SAR GSD is related to the NIIRS_{IR} via:

 $GSD = 10^{[(10.751 - NIIRSIR)/A]}$

R. Driggers, J. Ratches, J. Leachtenauer, R. Kistner, "Synthetic aperture radar target acquisition model based on a National Imagery Interpretability Rating Scale to probability of discrimination conversion", *Optical Engineering*, 42(7), July 2003. © Majumder, Blasch, Garren

National Interpretability Imagery Rating Scale (NIIRS): Example

national imagery interpretability rating scale (NIIRS) to assess the quality of SAR data. Given a SAR image with a NIIRS rating, then the discernability of certain features is possible. For example, in many of the MSTAR images, the ground sampling distance (GSD) resolution is 1 ft (0.3 m), which corresponds to a NIIRS of 7.

NIIRS	1	2	3	4	5	6	7	8	9
Resolution	> 9m	4.5-9.0m	2.5-4.5m	1.2-2.5m	0.75-1.2m	0.4-0.75m	0.2-0.4m	0.1-0.2 m	<0.1m
Detect	Road	Defense	Buildings	Convoy	Semi-	Wheeled vs.	Medium	Turrets	Guns
	networks	area			Truck	tracked	tank versus		
						tanks	car		

Through experiment, an **improved empirically fit result** was determined to be:

 $NIIRS_{IR} = 1.14 + 0.18*NIIRS_{SAR} + 0.08*NIIRS_{SAR}^{2}$

Using $y = ax^2 + bx + c$, then the solution is:

Knowing that NIIRS > 1, then the following are determined as:

<i>x</i> :	$=\frac{-b\pm\sqrt{b^2-4ac}}{(2a)}$
NIIRS _{SAR} =	$\frac{-0.18 \pm \sqrt{(0.18)^2 - 4(0.08)(1.14 - NIIRS_{IR})}}{(2 * 0.08)}$

			2*GSD(m
NIIRS-I	NIIRS - S	GSD (m))
2	2.3	5.88	11.76
3	3.8	2.84	5.67
4	5.0	1.37	2.74
5	5.9	0.66	1.32
6	6.8	0.32	0.64
7	7.5	0.15	0.31
8	8.2	0.07	0.15
9	8.9	0.04	0.07

E. Blasch, H-M. Chen, J. M. Irvine, Z. Wang, G. Chen, J. Nagy, S. A. Scott, "Prediction of compression induced image interpretability degradation," *Opt. Eng.*57(4), 043108, 2018.

SAR NIIRS Analysis

B. Kahler and E. Blasch, "Predicted Radar/Optical Feature Fusion Gains for Target Identification," Proc. IEEE Nat. Aerospace © Majumder, Blasch, Garren (NAECON), 2010.

Figure 9.19

User Interface

E. P. Blasch "Assembling a distributed fused Information-based Human-Computer Cognitive Decision Making Tool," *IEEE Aerospace and Electronic Systems Magazine*, Vol. 15, No. 5, pp. 11-17, May 2000.

• Constructive Test

simulation involving simulated people operating simulated systems

E. Blasch, *Derivation of a Belief Filter for Simultaneous High Range Resolution Radar Tracking and Identification,* Ph.D. Thesis, Wright State University, 1999.

Display of Results to User

• Visualization of metrics (360° around target)

Figure 9.20

E. P. Blasch and P. Svenmarck, "Target recognition using Vehicle Separation plots (VSP) for human assessment," 5th World Multi-conference On Systems, Cybernetics, and Informatics (SCI 2001), July 2001.

User Interface (for deployment)

• Live Test

simulation involving real people operating simulated systems

• Virtual Test

simulation involving real people operating simulated systems

Constructive Test simulation involving simulated people operating simulated systems

Tank

ATR Comparison

ATR Feature

Figure 9.21

Chapter 9 Outline

Dian K. Maumiler - Drik P. Blassit - David R. Garren

231
231 235
238
239
239
246
246
250
252
253
253
256
256