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Machine Learning Techniques for Radar
Automatic Target Recognition (ATR)

[ ecture Outline

1. Radio Frequency ATR: Past, Present, and Future:
20 min
2. Mathematics for Machine Learning / Deep Learning:
20 min
Review of ML Algorithms: 30 min
Deep Learning Algorithms: 30 min
RF Data for ML Research: 15 min
DL for Single Target Classification: 25 min

DL for Many Targets Classification: 20 min
RF Signals Classification: 15 min
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RF ATR Performance Evaluation: 25 min

10. Emerglng ML Algorithms for RF ATR: 35 min



Emerging ML Algorithms for RF ATR

> 7 Habits of ATR

» Noise Induced / Adversarial Machine Learning

» Transfer Learning

» Active Learning



2.3 Seven Habits of Effective ATR

Confidence (How sure and reliable are you?)
Understandable (How does it work?)

Robust (Do you Gracefully Degrade under Variability?)
Out of Library Confusers (How effective are you?)

Performance Model (PM) (What is your
Performance?)

Synthetic Data (How do you cover all Conditions?)

Sustainable End-to-End Training Process (How do you
stay current?)
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C. Paulson, L. Westerkamp, E. Zelnio., "Challenge problems consideration for the 7 habits of highly
effective ATRs", (Conference Presentation)", Proc. SPIE 11393, Algorithms for Synthetic Aperture
Radar Imagery XXVII, 113930V (27 April 2020); https://doi.org/10.1117/12.2561780



2.3.1 Confidence

Confidence (How sure and reliable are you?)
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2.3.2 Understandable

Understandable (How does it work?)

L "l Template A Data Base

Target A --.72
Clear Box Target B -- .13
Algorithm Rest  --.05

L 3l Template B Data Base




2.3.3 Robust

* Calibration Errors

Robust (Do you Gracefully Degrade under Variability?)

* Articulations
* Wear/ Tear
Range : * Extra / Missing Parts
* Defocus ‘ * Configurations
Artifacts & — * Adjacency

* Obscuration
). * Atmosphere

Sun A.«ngle .
* Terrain / Trees / Buildings



2.3.4. Out of Library / Distribution Confusers

Out of Library Confusers (How effective are you?)

In Library Mission Targets

-
KT N = 2
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2.3.5. ATR Performance Modeling

Performance Model (What is your Performance?)

Targets

Environment Performance

Model

Sensor(s)




2.3.6 Training with 100% Synthetic Data

Training with Synthetic Data (How do you cover all Conditions?)

* Limited Measured Data = Emerging Deep Learning Data Hungry
* Target, Environment, Sensor Conditions = Multi-Sensor Approaches
* Denied Targets

Example: Target Conditions

M109 Turret M109 Turret
@ _800 .- " » Q ’”0
== (Lo

-

Configurations
| T72 Fuel Drums On | | T72 Fuel Drums Off I

M109 Turret
@ -90°

* RF & EO prediction
* Sensor models

High Performance
Computation
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2.3.7 Real-time Training

Sustainable End-to-End Training Process (How do you stay current?)

New Regions of Interest

New Targets

New Adversary Countermeasures
Etc.

System
Updating

Target Data ‘ Algorithm Seapon

Knowledge Generation Training
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2.3.7 ATR Performance Evaluation Metric
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When given confusers (in library and out
of library), what is the probability the
system will declare a confuser as a
mission target? This version normalizes
the number of individual confusers.
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When given mission targets, what is the
probability the system will report a mission
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(cMy)
Z (CM,35) When given mission targets are declared, what is the
PID|Dec2 = = probability the mission target was identified correctly?
(CMyy) This version normalizes the number of individual
£t (CMuss) mission targets.
. When mission targets are declared, what is the
(CMyy) probability the mission target was identified
PCC3 = &2, (CMi5) correctly? This version normalizes the total number

ii (cMyy) "i - (cmy)
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of confusers to the total number of mission targets,
as well as the numbers of individual confusers and
individual mission targets.
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SAR ATR for Noisy Data

“* When Signal and Images are corrupted with Noise and Clutter
» In Deep Learning Literature, it is called Adversarial Issues,
» Adversarial Machine Learning (AML)

* Research Goal:
« How to tackle the Noise issue while Obtaining Accurate
Classification

88ABW-2019-5326
Nate Inkawhich, E. Davis, Uttam Majumder, et.al, “Advanced Techniques for
Robust SAR ATR:Mitigating Noise and Phase Errors”, IEEE Radar Conference 2020
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4. Background & ldea

*Background

— Deep Learning has made SAR-ATR models very accurate in
standard conditions
— Interpretability of DL models is lacking

— Robustness to many sources of noise Is a concern

*ldea

— If we train the network to be robust to worst-case noise, will
robustness increase in general? Interpretability?

14



4. Adversarial Training

*Train the network parameters to
minimize an “adversarial loss”

*Decision boundaries respect L..-
norm balls around the training data

Notable tradeoffs between clean
data accuracy, model capacity, and
dataset size have to be made

Intuition with L., norm ball

Standard Training Objective

min [L(:L', s 0)]
0 (xz,4)~D

Adversarial Training Objective

min [E max L(x + 9, vy; 0
i (m.y)ND[aeS (z +6,y;0)]

PGD Adversarial Attack
e =T, s(2" + asign(Ve:L(x', y;0)))
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4. Dataset Used for this Research

MSTAR

*Collected by Sandia National Lab, funded by
DARPA and AFRL

*X-band SAR sensor with 1-ft resolution
spotlight mode and 360° aspect coverage

251 Z5U234
*10 classes of targets o
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4. Civilian Vehicle Radar Data Domes (CVVDome)

Simulated X-band phase history
for 10 vehicle targets

- - s M) i e

*360° azimuth at elevations from
30° to 60° i e B 0 4 e R
e o v ) e K i

Polarization=HH, Azimuth=120

’

*11x11 meter image chips
generated at 0.3 meter resolution

i A,(“ ‘)\] . \“'\ \0(\ ((\3
N g3 99 AO@ PLARIRY 2 2 12<°
Y o et e el (@ T (000
v Hnnn.
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4. ATR Models

« SAR ATR Community Models

— A-ConvNet and ConvNetB
« Computer Vision Models

— ResNetl18, VGG11, ShuffleNetv?2

e L_-norm

— limit pixel-wise perturbation amount
« £=0 - “standard” trained model

TABLE I
DNN MODEL INFORMATION

model Ir # params MSTAR Acc  CVDome Acc
aconv | 0.001 373,898 08.39 01.91]
convb | 0.001 9,512,970 98.54 90.96
rml8 0.1 111,753,370 97.57 95.67
vggll 0.01 598,698 98.94 -

shuf 0.1 115,863 96.89 -
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4. MSTAR Standard Operating Conditions (SOC)

*Train: 17°, Test: 15° (Elevation)

*Accuracy degrades at large training &
— Architecture dependent

*Some models have improved

performance at small training & T 8 1 16 20 i s 3

training epsilon

=== ACONV === convb === n1l8  ==e= yggll shuf

*Takeaway: small training &’s do not
significantly harm MSTAR SOC
performance

19



4. CVDome Standard Operating Conditions

*Train: [30°, 40°, 50°, 60°] 1.00
*Test: [32°, 42°, 52°] 095 1
*Performance always 2 0% —
Improves with MP £ 0851 __ sconv-mp

=== convb-HH

-Some accuracy gain with R | o

= = ] == rnl3-MP
small training & P ; ; é :
eLarge accuracy loss in aconv Fraining epsiion

and convb at € =8

HH = single-polarization
MP = multi-polarization (HH,HV,VV)



4. Robustness: Adversarial Noise

*Worst-case noise, requires access to diaital
Orlgmal £=4 &=16

representation of data
. o Random #§
[ . noise becomes visible at £>8

FGSM (S

*Attacks completely degrade standard

trained models

*AT recovers most accuracy loss

— rn18 highest performer
— aconv and convb lowest perfori

o
oo
1
1
]

—t— aCconv
=== Cconvb
o= N18
== yvggll 14 .

shuf .
00 I I 1 1 1 lI T 1 1 I 1 1 1 T
0O 2 4 6 80 2 4 6 8 0 2 4 6 8

training epsilon

All test attacks generated at £=8

Accuracy

<
I
1

o
[N
1

e
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4. Robustness: Extended Operating Conditions

Train: 17°
Test: 30°
The 13° elevation shift causes changes in

15°

the shadow regions and target signatures 17 S

Small training & increases EOC
performance

« Rn18 £=2 increases accuracy by 11% °* .f_ R

ACCURACY IN EXTENDED OPERATING CONDITIONS (MSTAR)
training epsilon

0 2 4 6 8
aconv | 822 85.1 852 84.7 84.6
convb | 86.3 87.0 857 852 835
mlg 72.6 83,5 827 8277 82.6
shuf 75.8 81.6 81.7 813 80.2
vggll | 693 844 829 829 818
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4. Robustness: Phase Errors

*Add cubic, quadratic, sinusoidal, and wideband noise to the CVDome phase
history data

*Noise added in the range (fast time = FT) and/or azimuth (slow time = ST)
dimensions

se[n, p| = s[n, pleli (P rn [l+de.smlp)

Cubic Quadratic Sinusoidal Wideband
STFT STFT STFT STFT

!"uu.u!'u | | H | . |
LJ . B
o

.




4. Robustness: Phase Errors

Sinusoidal and wideband
noise are the most
challenging

*Rn18 is highest performing
architecture

*MP Increases robustness over
HH

*AT increases robustness, In
many cases by over 20%

ROBUSTNESS TO PHASE ERRORS (CVDOME)

& ~ - £ £
s ¢ & E B 8 g £ 2 § E % g
= e = = 3] =] o = = = o
model | eps 53 2 2 2 g = Z 3 3 e S S g
g B z £ EF E 3 z ) g 2 2 3
° S & 3 G G 2 z z e
0 | 9101 8784 89.7 83.79 8197 8798 7393 5735 8725 442 5379 7864 3347
o 2 19202 8929 9056 85.62 8325 8878 73.66 6046 88.66 50.74 56.83 81.51 4041
(HH) 4 | 8998 8823 88.05 84.19 8021 87.03 7247 5905 8723 5224 585 80.38 44.76
6 | 86.67 8553 8546 81.67 7726 84.61 69.69 57.52 84.62 5233 5652 7846 46.5
8 | 7497 7301 7305 6771 6392 7138 56.02 5135 7334 4932 5216 6796 46.67
0 | 9096 8734 88.79 8325 8241 8705 7153 5987 8644 468 5092 78.78 2932
" 2 | 9342 9087 916 8653 8484 8935 7376 6239 8998 5251 56.64 82.66 36.69
C;’l'g 4 | 9256 9041 9021 856 84.12 89.14 7391 6238 8955 542 57.32 8207 40.17
L 6 | 9026 88.1 8855 84.01 82.66 87.02 7289 6037 8746 522 5662 79.03 42.15
8 | 8401 8144 8203 7682 7506 7974 64.52 5579 80.02 50.51 5424 7101 4506
0 | 9567 8989 9265 8211 8556 0075 71.83 [62.7 %9.62 48.36
— 2 [ 9784 9579 9634 9228 9097 93.66 79.34 [63.69 93.62 55.08
HH) 4 19756 9517 96.16 9241 90.01 9271 78.69 [62.35 9433 54.84
6 | 9678 9357 9507 90.73 8798 91.08 7556 [61.15 9391 53.87
8 | 9551 9241 9411 8942 8647 8993 7439 [5925._9208 35453
0 [ 9606 93.61 9567 0O1.06 8728 9465 7898 7552 03.62 6152 06473 8796 42.03
acony 2 | 9846 9683 97.92 9497 9126 97.16 8508 7734 972 6793 7355 9374 5585
(MP) 4 | 9635 9441 9551 9237 876 9475 8164 7428 9596 6984 7415 9292 6139
6 | 9358 9123 9274 8891 8339 9167 7674 7102 9308 675 73.02 89.89 6335
8 | 8374 8212 83.03 792 7298 8221 6897 6239 8269 61. 6338 808 5815
0 | 9465 9382 9443 9107 87.73 93.78 78.79 8008 9253 6574 6535 8789 40.12
. 2 | 9884 9788 9856 963 9379 9771 86.15 8298 9821 7407 7726 956 57.03
L&";b 4 | 9756 9632 9743 9487 9283 9642 8578 8039 9743 7474 7775 9506 61.74
(MP) 6 | 95.66 9416 9505 9287 90.1 9405 83.58 77.08 09567 7255 735 9273 62.12
8 | 8898 8701 8787 8515 79.67 8684 7526 6641 8783 6389 6566 8442 6005
0 | 97.17 9637 0682 042 0361 0642 87.62 83. 0524 69.6 6714 8747 37.03
. 2 19971 9916 9935 9839 9723 9875 9246 8201 9838 7226 83.12 9594 6547
o) 4 | 9939 9875 9901 9807 97.1 982 9221 8142 9844 7401 8755 96690 74.52
6 | 9924 9856 98.67 97.83 9626 97.69 905 7842 9806 7205 8729 9647 77
8 | 9871 9788 9825 97.02 95.16 9687 89.01 76.16 9755 7123 8657 9582 7873
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4. Robustness: Phase Errors

Sinusoidal and wideband
noise are the most challenging

*Rn18 is highest performing
architecture

*MP Increases robustness over
HH

*AT Increases robustness, in
many cases by over 20%

model

eps

noError

cubicFT

cubicST

ROBUSTNESS TO PHASE ERRORS (CVDOME)

cubicSTFT

quadraticFT

quadraticST

quadraticSTFT

sinusoidalFT

sinusoidalST

widebandFT

widebandST

widebandSTFT

aconv
(HH)

91.91
92.02
89.98
86.67
74.97

87.84
89.29
88.23
85.53
73.01

89.7
90.56
88.05
85.46
73.05

83.79
85.62
84.19
81.67
67.71

81.97
83.25
80.21
77.26
63.92

87.98
88.78
87.03
84.61
71.38

73.93
73.66
72.47
69.69
56.02

57.35
60.46
59.05
57.52
51.35

87.25
88.66
87.23
84.62
73.34

N
+sinusoidalSTFT

9

50.74
52.24
52.33
49.32

53.79
56.83
58.5
56.52
52.16

78.64
81.51
80.38
78.46
67.96

33.47
40.41
44.76
46.5

46.67

convb
(HH)

DB O BN O

90.96
93.42
92.56
90.26

87.34
90.87
90.41
88.1

88.79
91.6
90.21
88.55

83.25
86.53
85.6
84.01

82.41
84.84
84.12
82.66

87.05
89.35
89.14
87.02

T1:53
73.76
73.91
72.89

59.87
62.39
62.38
60.37

86.44
89.98
89.55
87.46

46.8
5251
542
52.2

50.92
56.64
57.32
56.62

78.78
82.66
82.07
79.03

29.32
36.69
40.17
42.15

0+.UT

OT. 5%

02.UJ

TU.0Z

rJ.00

T7.7T%

UT.JZ

JI.TT

oU.UZ

JUJT

T LT

TT.UT

FJ.U0U

ml§
(HH)

95.67
97.84
97.56
96.78
95.51

89.89
95.79
95.17
93.57
92.41

92.65
96.34
96.16
95.07
94.11

82.11
92.28
9241
90.73
89.42

85.56
90.97
90.01
87.98
86.47

90.75
93.66
92.71
91.08
89.93

71.83
79.34
78.69
75.56
74.39

62.7
63.69
62.35
61.15
59.25

89.62
93.62
94.33
93.91
92.98

48.56
55.08
54.84
53.87
54.55

51.26
64.71
66.98
67.67
66.64

77.24
86.83
87.7
87.15
86.79

27.61
4497
53.91
55.39
58.14

aconv
(MP)

98.46
96.35
93.58
83.74

9501
96.83
9441
91.23
82.12

U5.07
97.92
95.51
92.74
83.03

OT.00
94,97
92.37
88.91
79.2

57.25
91.26
87.6
83.39
72.98

305
97.16
94.75
91.67
8221

T8.98
85.08
81.64
76.74
68.97

7552
71.34
74.28
71.02
62.39

I3.0
97.2
95.96
93.08
82.69

015
67.93
69.84
67.5
61.

%73
73.55
74.15
73.02
63.38

B7.90
03.74
9292
89.89
80.8

4703
55.85
61.39
63.35
58.15

convb
(MP)

00 O 4= b T oo O = 2 G

94.65
98.84
97.56
95.66
8898

93.82
97.88
96.32
94.16
8201

94.43
98.56
97.43

95.05
{787

91.07
96.3
94.87

92.87
313

87.73
93.79
92.83
90.1
1967

93.78
97.71
96.42
94.03
86,84

78.79
86.15
85.78
83.58
7526

80.08
82.98
80.39

77.08
64l

92.53
98.21
97.43
95.67
8783

65.74
74.07
74.74
72.55
63 89

05.35
71.26
71.75
735
0560

87.89
95.6
95.06
92.73
8442

40.12
57.03
61.74
62.12
6005

ml§
(MP)

97.17
99.71
99.39
99.24
98.71

96.37
99.16
98.75
98.56
97.88

96.82
99.35
99.01
98.67
98.25

94.2
98.39
98.07
97.83
97.02

93.61
97.23
97.1
96.26
95.16

96.42
98.75
98.2
97.69
96.87

87.62
92.46
9221
90.5

89.01

83.
82.01
8142
78.42
76.16

95.24
98.38
98.44
98.06
97.55

69.6
72.26
74.01
72.05
71.23

67.14
83.12
87.55
87.29
86.57

87.47
95.94
96.69
96.47
95.82

37.03
65.47
74.52
7.
78.73
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4. Robustness: Radio Interference (RI)

 RI noise appears as strong stripes in the
range dimension

« Standard model accuracy around 20%
lower than SOC because stripe directly
alters representation

* Noise impacts each architecture
differently:

e For aconv and convb, AT harms robustness
» For rn18, AT boosts robustness by 2.6%

ROBUSTNESS TO INTERFERENCE NOISE (MSTAR)
training epsilon
0 2 4 6 8
aconv | 71.0 729 721 731 717
convb | 77.5 739 73.0 724 72
|_mlI8 80.4 808 83.0 83.0 822 |
shuf | 71.5 558 60.1 587 57.1
vggll | 79.1 809 775 797 759
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Summary on Noise Induced SAR/RFATR

*Robustness and interpretability improve with AT
AT models do not rely on shadow regions

*Multi-polarization information helpful in accuracy and
robustness

*The impact of AT greatly depends on architecture

— Small and fast models not good for AT
— Rn18 works the best here but is the largest

28



Transfer Learning Research Goal

measured data are limited OR Training and Testing data do not match (sensor variations,
sensitivity of the data collection system etc.)

= Often measured radar data are expensive due to cost associated with the collection

= Synthetic radar data generation is an inexpensive way of gathering radar imagery (for
ML research)

= However, synthetic radar data are pristine and do not resemble measured data well

= Hence Our Research Problem: Investigating Technical
Approaches to Develop a DNN model with 100% Synthetic
Data and Test with Measured Data while Achieving Better
Than SoTA Accuracy

= \We achieved 97% Max. accuracy (92% Avg.) compared to 25% presented in
SAMPLE dataset challenge problem.

= Other researcher achieved 95% accuracy while using (99% synthetic and 1%

measured data). They did not use 100% synthetic data -



AFRL SAMPLE Dataset

AFRL/RY published Synthetic and Measured Paired
Labeled Experiment (SAMPLE) dataset for Transfer
L_earning research

The SAMPLE dataset was constructed by simulating
radar capture of CAD models of the MSTAR dataset.

The generation of the CAD models included human
Input to ensure that the models matched the vehicles.

The simulated radar capture was done matching the
angle and other metadata of the images in the MSTAR
dataset.

Benjamin Lewis, Theresa Scarnati, Elizabeth Sudkamp, John Nehrbass, Stephen Rosencrantz,
and Edmund Zelnio "A SAR dataset for ATR development: the Synthetic and Measured Paired Labeled Experiment
(SAMPLE)", Proc. SPIE 10987, Algorithms for Synthetic Aperture Radar Imagery XXVI, 109870H (14 May 2019)



Challenge Problems Using SAMPLE Dataset

# 1: Classifying Measured Data from 100% Synthetic Training Data
-- This is the research we are presenting here

# 2. For 10 Targets type, say 8 have been trained with measured and 2 have
been trained with synthetic data. After testing with measured dataset, analyze

performance of all 10 targets type, 2 synthetic targets and 8 measured
targets.

# 3. The Open Set Problem: Out of 10 target types, remove training data for
2 target types. Then take a fraction of synthetic and measured data to train 8
classes. Now, analyze performance of 10 classes on measured data
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Transfer Learning

The filed of Transfer Learning has been expanded and hence it can be of

various types (Interested reader may look into “A Survey on Transfer
Learning”)

= In Radar sensor, TL is most often used to work on Synthetic and Measured

radar data (In this research). It may also include Radar frequency changes
(X-band and C-band/Ku-Band) on train/test

= TL may include training on Electro-optical (video imagery) data but
testing on radar data

" “Domain Adaptation” is often used for TL

= Few-shot Learning / One-shot Learning

S.J. Pan and Q. Yang, "A Survey on Transfer Learning," in
IEEE Transactions on Knowledge and Data Engineering, vol. 22, no. 10, pp. 1345-1359, Oct. 2010, doi: 10.1109/TKDE.2009.191.
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Transfer Learning on SAMPLE data

0.9
0.8
0.7

0.6

Probability of Correct Classification

0.5

O
T S S . T I ST

Fraction of Measured Training Data (k)

SAMPLE Challenge problem paper shows that when 100% synthetic data are used
with a very simple DNN model, it achieves less than 50% accuracy when tested on
the measured data. We use this as a starting point and use various methods to
improve performance from that model.
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DNN Models and Hyperparameter

We tested the following DNN
hyperparameters to examine
their impact on classification
accuracy:

- Rotation

« Uniformly distributed random
noise

- Gaussian random noise

« Simulated radar clutter

« Horizontal flip

« Learning rate decay

« Dropout

« Weight decay

We tested the following model
types:

® Model defined by the
SAMPLE paper

Resnetl8

Resnetl8 wide

Resnet50

Densenetl21
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Mixup

Mixup iIs a combination of two randomly selected images

within the training set. Using the Beta distribution to
generate a value A € [0,1]. Each pixel of the mixup, is
defined by pg m=A*Pgi 1y + (1-4)*pg 5y Where py 4,
represents the ith pixel in the first image and py; »,
represents the ith pixel in the second image.

The two images may be from different classes, in which
case the new label to be used will be the one hot vector
with the value for image 1’s class as A and the value for
image 2’s class as 1-4
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Mixup (cont.)

We tried two methods for adding mixup:

.- Mixup within each batch - given permutation P, index
I, within each batch is replaced by the mixup of | and
P[i]

- Mixup augmenting the dataset - For each datum to be
added, two random data are selected and the mixup of
those two data are added to the dataset in addition to
the rest of the dataset.
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Cosine Loss

» Cosine loss Is an alternative to SGD that is based
solely on vector direction instead of magnitude.

It restricts the domain to the unit hypersphere by
normalizing the feature space. This bounds the output
to [0,2] and ignores any lack of regularization which
may be present.

* These both help when training on small datasets like
SAMPLE, especially because the synthetic data does
have a different average brightness than the measured
data.
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Label Smoothing

- Changes each integer class label into a one hot vector
with other classes represented by the uniform random
distribution

. Keeps the model from becoming too sure of its
classifications

38



Optimal Parameters Determined Individually

. |terations = 40
. Batch size = 16

- learning rate =
107-3

. Gaussian noise =

4

- Uniform noise =0
- Mixup alpha = .8
- Weight decay =
1074

- Rotation = 20

- Flip=.1

.- Dropout = .2*

- sim clutter = .8

- learning rate decay = .4 after 30

epochs

- label smoothing = .1
. cosine loss

39



accuracy

Different models with naively selected

Results

optimal parameters

all_params vs. accuracy

o
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0.1 4

0.0 -

0.0

SAMPLE
model

Resnet18 all narams Resnet50

Resnet18
Wide

0.4

Densenet121
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Optimal Parameters on Resnet18

- Iterations = 40 (Some testing

done on 100)

Batch size = 16 (Some testing
done on 64)

learning rate = 10™-3
Gaussian noise = .4
Uniform noise =0
Mixup alpha=0
Weight decay = 0
Rotation =0

Flip=0

Dropout = .4

Sim clutter =0
Learning rate decay =0
Label smoothing =.1
Cross entropy loss

Gaussian + Dropout + OTHER (dsize=64, b_size=128, norm=|-1,1], #trains=100, epochs=60, Ir=0.001)

Method Min-Acc

Model = sample_model

gaussian_std=0.3, drop=0.3 0.7087
gaussian_std=03, drop=0.3, label_smooth=0.08 0.7643
gaussian_std=0.3, drop=0.3, mbup=0.1 0.6586
gaussian_std=0.3, drop=0.3, cosine_loss 0.6103
gaussian_std=0.2, drop=0.2, AT (eps=2, alpha=0.5, its=7) 0. 7866
gaussian_std=0.2, drop=0.2, AT |eps=4, alpha=1, its=7) 0.74595
gaussian_std=0.2, drop=0.2, AT |eps=g, alphasl, itsa7) 0.8107

Model = resnetls

gaussian_std=0.4, drop=0.4 0.8126
gaussian_std=0.4, drop=0.4, label_smooth=0.08 0.846
gaussian_std=0.4, drop=0.4, label_smooth=0.1 0.8497
gaussian_std=0.4, drop=0.4, mbup=0.1 0.8441
gaussian_std=0.4, drop=0.4, cosine_loss 0.8293
gaussian_std=0.3, drop=0.3, AT (eps=2, alpha=0.5, its=7) 0.8311
gaussian_std=0.3, drop=0.3, AT (eps=4, alpha=1, its=7) 0.8627
gaussian_std=0.3, drop=0.3, AT |eps=8, alpha=2, its=7) 0.8478
AT16
Model = wide-resnet 18

gaussian_std=0.4, drop=0.4 0.8051
gaussian_std=0.4, drop=0.4, label_smooth=0.08 0.8497
gaussian_std=0.4, drop=0.4, mixup=0.1 0.794
gaussian_std=0.4, drop=0.4, cosine_loss: 0.7977
gaussian_std=0.3, drop=0.3, AT (epss2, alpha=0.5, itsa7} 0.8144
gaussian_std=03, drop=0.3, AT (eps=4, alpha=1, its=7) 0.8367
gaussian_std=0.3, drop=0.3, AT (eps=8, alpha=2, its=7) 0.8237

Ma-Acc

0.5072

0.935
09183

0.922
0.9276
0.9276
0.9369

0.9536
0.9536
0.59554
0.9684
0.9573

0.948
09443
0.9387

09481
0.9591
0.9721
0.9536
0.59536
09517
0.9369

Avg-hcc

0.8207
0.8669
0.8416
0.8334
0.8645
0.8639
0.8851

0.89E3
09119
0.9187
0.9079
0.9041
0.9022
0.9012

0.853

0.BET9
0.9105
0.9014
0.9001
0.9043
0.8966
0.8852

std-Acc

0.0414
0.0341
0.0431

0.051
0.0289
0.0375
0.0268

0.03
0.0233
0.0217
0.0264
0.0266
0.0263
0.0204
0.0199

0.0285
0.0241
0.0321
0.0292
0.0281
0.0283
0.0245

Perf-Know

0.9202
0.9462
0.9257
0.9462
0.93E7
0.5332

0548

0.9628

0574
0.9647
0.96E4

0.961
0.9666
0.9703
0.9453

0.9628
0.9703

0,974
0.96E4
0.9628
0.9628
0.9554

Some of the parameter compositions we tried searching for the maximum

accuracy
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Summary on Transfer Learning

= DNN Models |5|ay a Blg role on 1L Performance

v' Resnet18 Performs better than any other Model
= Adding Gaussian Noise (0.4) to the Synthetic Data for Training boost
Performance

= Dropout (0.4) and Label Smoothing (0.1) also improved classification
performance

= Qverall, we achieved 92% (Avg.) accuracy using 100% synthetic Data for
training and testing on measured data.
v" This is huge and first of it’s kind result on the SAMPLE dataset

= Other approaches (Ensembles) can be incorporated to improve the
accuracy further

42



5. Future Research Challenges: RF SAR ATR

 Transfer Learning / Domain Adaptation
— 100% Synthetic Data for Training, measured Data for Testing

* Out of Distribution Detection and Classification
— Reducing False Alarm in the Presence of Confusers

 Real-time Training
» Sufficient Statistic Analysis for Object Classification
— Least amount of data needed for Training yet achieving high accuracy

* On-Chip, On-line, Power Efficient Learning Hardware

— Memristor, Neuromorphic Computing, Intel Loihi (Spiking Neural
Networks)

» Multiple-int (RF, EO) Fusion for Target Recognition
« Quantum ML algorithms for RF target classification
 SAR ATR Complexity Analysis
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Thank you.
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