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Lecture Outline
1. Radio Frequency ATR: Past, Present, and Future:

20 min 

2.  Mathematics for Machine Learning / Deep Learning: 

      20 min 

3.  Review of ML Algorithms: 30 min 

4.  Deep Learning Algorithms: 30 min 

5.  RF Data for ML Research: 15 min 

6.  DL for Single Target Classification: 25 min 

7.  DL for Many Targets Classification: 20 min 

8.  RF Signals Classification: 15 min 

9.  RF ATR Performance Evaluation: 25 min 

10. Emerging ML Algorithms for RF  ATR: 35 min 

Machine Learning Techniques for Radar 

Automatic Target Recognition (ATR)
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➢  7 Habits of ATR

➢  Noise Induced / Adversarial Machine Learning

➢  Transfer Learning

➢  Active Learning

Emerging ML Algorithms for RF  ATR
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2.3 Seven Habits of Effective ATR

C. Paulson, L. Westerkamp, E. Zelnio., "Challenge problems consideration for the 7 habits  of highly 

effective ATRs",  (Conference Presentation)", Proc. SPIE 11393,  Algorithms for Synthetic Aperture 

Radar Imagery XXVII, 113930V (27 April 2020); https://doi.org/10.1117/12.2561780
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2.3.1 Confidence 
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2.3.2 Understandable 
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2.3.3 Robust
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2.3.4. Out of Library / Distribution Confusers
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2.3.5. ATR Performance Modeling
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2.3.6 Training with 100% Synthetic Data 
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2.3.7 Real-time Training
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2.3.7 ATR Performance Evaluation Metric
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SAR ATR for Noisy Data

❖When Signal and Images are corrupted with Noise and Clutter

➢ In Deep Learning Literature, it is called Adversarial Issues,

▪ Adversarial Machine Learning (AML)

▪ Research Goal:

• How to tackle the Noise issue while Obtaining Accurate

     Classification

88ABW-2019-5326 
Nate Inkawhich, E. Davis, Uttam Majumder, et.al, “Advanced Techniques for 
Robust SAR ATR:Mitigating Noise and Phase Errors”, IEEE Radar Conference 2020
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4. Background & Idea

•Background

– Deep Learning has made SAR-ATR models very accurate in 

standard conditions

– Interpretability of DL models is lacking

– Robustness to many sources of noise is a concern

•Idea

– If we train the network to be robust to worst-case noise, will 

robustness increase in general? Interpretability?
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•Train the network parameters to 

minimize an “adversarial loss”

•Decision boundaries respect L∞-

norm balls around the training data

•Notable tradeoffs between clean 

data accuracy, model capacity, and 

dataset size have to be made

4. Adversarial Training

Intuition with L∞ norm ball

Standard Training Objective

Adversarial Training Objective

PGD Adversarial Attack
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4. Dataset Used for this Research

•Collected by Sandia National Lab, funded by 

DARPA and AFRL

•X-band SAR sensor with 1-ft resolution 

spotlight mode and 360° aspect coverage

•10 classes of targets
2S1 ZSU234

MSTAR
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4. Civilian Vehicle Radar Data Domes (CVDome)

•Simulated X-band phase history 

for 10 vehicle targets

•360° azimuth at elevations from 

30° to 60°

•11x11 meter image chips 

generated at 0.3 meter resolution

Polarization=HH, Azimuth=120

Camry Jeep93
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4. ATR Models

• SAR ATR Community Models 

– A-ConvNet and ConvNetB

• Computer Vision Models 

– ResNet18, VGG11, ShuffleNetv2

• L∞-norm 

– limit pixel-wise perturbation amount

• 𝜺=0 → “standard” trained model
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4. MSTAR Standard Operating Conditions (SOC)

•Train: 17°, Test: 15° (Elevation)

•Accuracy degrades at large training 𝜺

– Architecture dependent

•Some models have improved 

   performance at small training 𝜺 

•Takeaway: small training 𝜺’s do not 

significantly harm MSTAR SOC 

performance



20

4. CVDome Standard Operating Conditions

•Train: [30°, 40°, 50°, 60°]

•Test: [32°, 42°, 52°]

•Performance always 

improves with MP

•Some accuracy gain with 

small training 𝜺

•Large accuracy loss in aconv 

and convb at 𝜺 = 8

HH = single-polarization
MP = multi-polarization (HH,HV,VV)
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4. Robustness: Adversarial Noise 

•Worst-case noise, requires access to digital 

representation of data

•L∞ noise becomes visible at 𝜺>8

 

•Attacks completely degrade standard

 trained models

•AT recovers most accuracy loss

– rn18 highest performer

– aconv and convb lowest performers

All test attacks generated at 𝜺=8
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4.  Robustness: Extended Operating Conditions

• Train: 17°

• Test: 30°

• The 13° elevation shift causes changes in 
the shadow regions and target signatures

• Small training 𝜺 increases EOC 
performance

• Rn18 𝜺=2 increases accuracy by 11%
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4. Robustness: Phase Errors

•Add cubic, quadratic, sinusoidal, and wideband noise to the CVDome phase 

history data

•Noise added in the range (fast time = FT) and/or azimuth (slow time = ST) 

dimensions
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4. Robustness: Phase Errors

•Sinusoidal and wideband 

noise are the most 

challenging

•Rn18 is highest performing 

architecture

•MP increases robustness over 

HH

•AT increases robustness, in 

many cases by over 20%
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4. Robustness: Phase Errors

•Sinusoidal and wideband 

noise are the most challenging

•Rn18 is highest performing 

architecture

•MP increases robustness over 

HH

•AT increases robustness, in 

many cases by over 20%
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4. Robustness: Radio Interference (RI)

• RI noise appears as strong stripes in the 
range dimension

• Standard model accuracy around 20% 
lower than SOC because stripe directly 
alters representation

• Noise impacts each architecture 
differently:

• For aconv and convb, AT harms robustness

• For rn18, AT boosts robustness by 2.6%
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Summary on Noise Induced SAR/RF ATR 

•Robustness and interpretability improve with AT

•AT models do not rely on shadow regions

•Multi-polarization information helpful in accuracy and 

robustness

•The impact of AT greatly depends on architecture

– Small and fast models not good for AT 

– Rn18 works the best here but is the largest
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Transfer Learning Research Goal

▪ Transfer Learning (TL) is an important research area of Machine Learning when 

measured data are limited  OR Training and Testing data do not match (sensor variations, 

sensitivity of the data collection system etc.) 

▪ Often measured radar data are expensive due to cost associated with the collection

▪ Synthetic radar data generation is an inexpensive way of gathering radar imagery (for 

ML research)

▪ However, synthetic radar data are pristine and do not resemble measured data well

▪ Hence Our Research Problem: Investigating Technical 

Approaches to Develop a DNN model with 100% Synthetic 

Data and Test with Measured Data while Achieving Better 

Than SoTA Accuracy

▪ We achieved 97% Max. accuracy (92% Avg.) compared to 25% presented in 

SAMPLE dataset  challenge problem. 

▪ Other researcher achieved 95% accuracy while using (99% synthetic and 1% 

measured data). They did not use 100% synthetic data
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AFRL SAMPLE Dataset

▪ AFRL/RY published Synthetic and Measured Paired 

Labeled Experiment (SAMPLE) dataset for Transfer 

Learning research

▪ The SAMPLE dataset was constructed by simulating 

radar capture of CAD models of the MSTAR dataset. 

▪ The generation of the CAD models included human 

input to ensure that the models matched the vehicles. 

▪ The simulated radar capture was done matching the 

angle and other metadata of the images in the MSTAR 

dataset. 
Benjamin Lewis, Theresa Scarnati, Elizabeth Sudkamp, John Nehrbass, Stephen Rosencrantz, 
and Edmund Zelnio "A SAR dataset for ATR development: the Synthetic and Measured Paired Labeled Experiment 
(SAMPLE)", Proc. SPIE 10987, Algorithms for Synthetic Aperture Radar Imagery XXVI, 109870H (14 May 2019)
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Challenge Problems Using SAMPLE Dataset 

# 1: Classifying Measured Data from 100% Synthetic Training Data

  -- This is the research we are presenting here

# 2: For 10 Targets type, say 8 have been trained with measured and 2 have 

been trained with synthetic data. After testing with measured dataset, analyze 

performance of all 10 targets type, 2 synthetic targets and 8 measured 

targets. 

# 3: The Open Set Problem:  Out of 10 target types, remove training data for 

2 target types. Then take a fraction of synthetic and measured data to train 8 

classes. Now, analyze performance  of 10 classes on measured data



32

Transfer Learning

▪ The filed of Transfer Learning has been expanded and hence it can be of 

various types (Interested reader may look into “A Survey on Transfer 

Learning”)

▪ In Radar sensor, TL is most often used to work on Synthetic and Measured 

radar data (In this research). It may also include Radar frequency changes 

(X-band and C-band/Ku-Band) on train/test

▪ TL may include training on Electro-optical (video imagery)  data but 

testing on radar data

▪ “Domain Adaptation” is often used for TL 

▪ Few-shot Learning / One-shot Learning 

S. J. Pan and Q. Yang, "A Survey on Transfer Learning," in
IEEE Transactions on Knowledge and Data Engineering, vol. 22, no. 10, pp. 1345-1359, Oct. 2010, doi: 10.1109/TKDE.2009.191.
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Transfer Learning on SAMPLE data

SAMPLE Challenge problem paper shows that when 100% synthetic data are used 

with a very simple DNN model, it achieves less than 50% accuracy when tested on 

the measured data. We use this as a starting point and use various methods to 

improve performance from that model.
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DNN Models and Hyperparameter

We tested the following DNN 

hyperparameters  to examine 

their impact on classification 

accuracy:

• Rotation

• Uniformly distributed random 

noise

• Gaussian random noise

• Simulated radar clutter

• Horizontal flip

• Learning rate decay

• Dropout

• Weight decay

We tested the following model 
types:
▪ Model defined by the 

SAMPLE paper
▪ Resnet18
▪ Resnet18 wide
▪ Resnet50
▪ Densenet121
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Mixup

Mixup is a combination of two randomly selected images 

within the training set. Using the Beta distribution to 

generate a value 𝜆 ∈ [0,1]. Each pixel of the mixup, is 

defined by p{i,m}=𝜆*p{i,1} + (1-𝜆)*p{i,2} where p{i,1} 

represents the ith pixel in the first image and p{i,2} 

represents the ith pixel in the second image.

The two images may be from different classes, in which 

case the new label to be used will be the one hot vector 

with the value for image 1’s class as 𝜆 and the value for 

image 2’s class as 1-𝜆
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Mixup (cont.)

We tried two methods for adding mixup:

• Mixup within each batch - given permutation P, index 

i, within each batch is replaced by the mixup of i and 

P[i]

• Mixup augmenting the dataset - For each datum to be 

added, two random data are selected and the mixup of 

those two data are added to the dataset in addition to 

the rest of the dataset.
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Cosine Loss

• Cosine loss is an alternative to SGD that is based 

solely on vector direction instead of magnitude. 

• It restricts the domain to the unit hypersphere by 

normalizing the feature space. This bounds the output 

to [0,2] and ignores any lack of regularization which 

may be present. 

• These both help when training on small datasets like 

SAMPLE, especially because the synthetic data does 

have a different average brightness than the measured 

data.
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Label Smoothing

• Changes each integer class label into a one hot vector 

with other classes represented by the uniform random 

distribution

• Keeps the model from becoming too sure of its 

classifications
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Optimal Parameters Determined Individually

• Iterations = 40

• Batch size = 16

• learning rate = 

10^-3

• Gaussian noise = 

.4

• Uniform noise = 0

• Mixup alpha = .8

• Weight decay = 

10^-4

• Rotation = 20

• Flip = .1

• Dropout = .2*

• sim clutter = .8

• learning rate decay = .4 after 30 

epochs

• label smoothing = .1

• cosine loss
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Results

Different models with naively selected 
optimal parameters

SAMPLE 
model

Resnet18

Resnet18 
Wide

Resnet50 Densenet121
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Optimal Parameters on Resnet18

• Iterations = 40 (Some testing 

done on 100)

• Batch size = 16 (Some testing 

done on 64)

• learning rate = 10^-3

• Gaussian noise = .4

• Uniform noise = 0

• Mixup alpha = 0

• Weight decay = 0

• Rotation = 0

• Flip = 0

• Dropout = .4

• Sim clutter = 0

• Learning rate decay = 0

• Label smoothing = .1

• Cross entropy loss

Some of the parameter compositions we tried searching for the maximum 
accuracy
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Summary on Transfer Learning

▪ DNN Models Play a big role on TL Performance

✓ Resnet18 Performs better than any other Model

▪ Adding Gaussian Noise (0.4) to the Synthetic Data for Training boost 

Performance

▪ Dropout (0.4) and Label Smoothing (0.1) also improved classification 

performance

▪ Overall, we achieved 92% (Avg.) accuracy using 100% synthetic Data for 

training and testing on measured data.

✓ This is huge and first of it’s kind result on the SAMPLE dataset

▪ Other approaches (Ensembles) can be incorporated to improve the 

accuracy further
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5. Future Research Challenges: RF SAR ATR

• Transfer Learning / Domain Adaptation

– 100% Synthetic Data for Training, measured Data for Testing

• Out of Distribution Detection and Classification

– Reducing False Alarm in the Presence of Confusers

• Real-time Training

• Sufficient Statistic Analysis for Object Classification

– Least amount of data needed for Training yet achieving high accuracy

• On-Chip, On-line, Power Efficient Learning Hardware

– Memristor, Neuromorphic Computing, Intel Loihi (Spiking Neural 

Networks)

• Multiple-int (RF, EO) Fusion for Target Recognition

• Quantum ML algorithms for RF target classification

•  SAR ATR Complexity Analysis
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Thank you.
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